书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型2021年全国甲卷高考理科数学真题及答案.doc

  • 上传人(卖家):雁南飞1234
  • 文档编号:2614000
  • 上传时间:2022-05-11
  • 格式:DOC
  • 页数:14
  • 大小:3.14MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2021年全国甲卷高考理科数学真题及答案.doc》由用户(雁南飞1234)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    考试试题及答案
    资源描述:

    1、2021年全国甲卷高考理科数学真题及答案1.设集合M=x|0x4,N=x|13x5,则MN=A. x|0x13B. x|13x4C. x|4x5D. x|0x52.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.已知(1-i)2z=3+2i,则z=A

    2、.-1-32iB. -1+32iC. -32+iD. -32-i4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记数法的数据V满足L=5+lgV。已知某同学视力的五分记录法的数据为4.9,则其视力的小数记数法的数据约为(10101.259)A.1.5 B.1.2 C.0.8 D.0.65.已知F1,F2是双曲线C的两个焦点,P为C上一点,且F1PF2=60,|PF1|=3|PF2|,则C的离心率为A.72B. 132C.7D.136.在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EF

    3、G后,所得多面体的三视图中,正试图如右图所示,则相应的侧视图是A. B. C. D. 7.等比数列an的公比为q,前n项和为Sn,设甲:q0,乙:Sn是递増数列,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件8.2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.右图是三角高程测量法的一个示意图,现有以A,B, C三点,且A,B,C在同一水平而上的投影A,B,C满足ACB=45,ABC=60.由c点测得B点的仰角为15,曲,BB与CC

    4、的差为100 :由B点测得A点的仰角为45,则A,C两点到水平面ABC的高度差AA-CC约为(31.732)A.346 B.373 C. 446 D.4739.若(0,2),tan2=cos2-sin,则tan=A.1515 B. 55 C. 53 D. 15310.将4个1和2个0随机排成一行,则2个0 不相邻的概率为A.13 B. 25 C. 23 D. 4511.已知A,B,C是半径为1的求O的球面上的三个点,且ACBC,AC=BC=1,则三棱锥O-ABC的体积为A.212 B. 312 C. 24 D. 3412.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,

    5、当x1,2时,fx=ax2+b.若f0+f3=6,则f92=A.-94 B.-32 C. 74 D. 52二、填空题:本题共4小题,每小题5分,共20分。13.曲线y=2x-1x+2在点(-1,-3)处的切线方程为_。14.已知向量a=(3,1),b=(1,0),c=a+kb,若ac,则k=_。15.已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点堆成的两点,且PQ=F1F2,则四边形PF1QF2的面积为_。16.已知函数fx=2cosx+的部分图像如图所示,则满足条件(fx-f-74)(fx-f43)0的最小正整数x为_。三、解答題:共70分。解答应写出文字说

    6、明,证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。 17.(12 分)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异? 附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d) 18.(12 分)已知数列an的各项均为正数,记Sn为an的前n项和,从下面中选取两个作为条件,证明另外

    7、一个成立. 数列an是等差数列:数列Sn是等差数列;a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.19.(12分)已知直三棱柱ABC-A1B1C1.中,侧面AA1B1B为正方形, AB= BC = 2, E, F分别为AC和CC1的中点,D为棱A1B1上的点,BF丄A1B1.(1) 证明:BFDE; 当为B1D何值时,面BB1C1C与面DFE所成的二面角的正弦值最小? 20.(12分)抛物线C的顶点为坐标原点O,焦点在x轴上,直线L:x = 1交C于P,Q两点, 且OP丄OQ.已知点M(2,0),且M与L相切,(1) 求C , M的方程;(2) 设A1,A2,A3,是C上的三个

    8、点,直线A1 A2, A1 A3均与 M相切,判断A2A3与M的位置关系,并说明理由.21.(12 分)己知a0且a1,函数f(x)=xaax(x0),(1)当a=2时,求f(x)的单调区间;(2)若曲线y= f(x)与直线y=1有且仅有两个交点,求a的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.选修4一4:坐标系与参数方程(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为=22cos.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为(1,0),M为C上的动点,点

    9、P满足AP = 2AM,写出 P的轨迹C1的参数方程,并判断C与C1是否有公共点.23.选修4一5:不等式选讲(10分)已知函数f(x)=|x-2|, g(x) =|2x + 3|-|2x-1|.(1)画出f(x)和y=g(x)的图像;(2)若f(x+a)g(x),求a的取值范围.参考答案选择:1、B2、C3、B4、C5、A6、D7、B8、B9、A10、C11、A12、D填空:13:5x-y+2=014:-10315:816:2大题:17:(1)由题意可知:甲机床生产的产品中一级品的频率是:150/200=3/4乙机床生产的产品中一级品的频率是:120/200=3/5(2)由于K2=400*1

    10、50*80-50*1202270*130*200*200=4003910.2566.635所以,有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异。18:情况一:选择为条件,即数列an为等差数列,且a2=3a1证明:设等差数列an的公差为d,由题意可知,a10,d0,且a2=3a1=a1+d所以,d=2a1,所以an=a1+n-1d=(2n-1)a1所以Sn=n(a1+an)2=(n*2na1)/2=n2a1所以Sn=na1,Sn+1=(n+1)a1Sn+1-Sn=a1,为常数,所以数列Sn为等差数列。情况二:选择为条件。证明:设等差数列an的公差为d,则 d0因为Sn为等差数列,所以

    11、2S2=S1+S3,即22a1+d=a1+3(a1+d)等式两边平方得:4(2a1+d)=a1+3a1+3d+23a1(a1+d)即:4a1+d=23(a12+a1d)等式两边平方:4a12-4a1d+d2=0也就是:(2a1-d)2=0,即d=2a1,所以a2=a1+d=3a1情况三:选择为条件。证明:因为Sn为等差数列,且an0,所以可设Sn=Kn+b(k0)其中k,b为常数,kn+b0对任意n属于N *成立所以:Sn=(Kn+b)2,a1=S1=(K+b)2N大于等于2时,an=Sn-Sn-1=2n-1k2+2kb又因为a2=3a1,所以3k2+2kb=3(K+b)2,解得b=0或者4k

    12、+3b=0当b=o时,a1=k2,n大于等于2时,an=2n-1k2,n=1时同所以an=2n-1k2,所以数列an为等差数列。当4k+3b=0时,b=4/3k,S1=K+b=-1/3k0,舍去。综合,数列an为等差数列19:(1)直棱柱ABC-A1B1C1,侧面AA1B1B为正方形所以A1B1=B1B=AB=BC=2所以侧面BB1C1C为正方形取BC中点M,连接B1M和EM因为F为CC1重点,所以B1MBF由已知BFA1B1且A1B1B1M=B1所以BF平面A1B1M由于E为AC中点,所以EMA1B1所以EM平面A1B1M,所以BFDE(2)由(1)可知,A1B1BF,且A1B1B1B,所以

    13、A1B1平面B1BCC1以B为原点,BC,BY,BB1为xyz轴建立空间直角坐标系设C(2,0,0),A(0,-2,0),B1(0,0,2)C1(2,0,2),A1(0,-2,2),E(1,-1,0),F(2,0,1),D(0,n,2)则向量EF=(1,1,1),向量FD=(-2,n,1)设向量m平面BB1C1C,则向量m=(0,1,0)向量n平面DEF,则向量n=(x,y,z)由:n*EF=0n*FD=0 得:x+y+z=0-2x+ny+z=0得:3x+1-ny=0y=3z=-x-y得:n=(n-1,3,-n-2)设平面BB1C1C与平面DEF所称角为QcosQ=|cos|=3(n+1)2+

    14、9+(n-1)2=32n2+2n+14设yn=n2+n+7=(n+1/2)2+27/4所以,当n=-1/2时,cosQ最大为32*27/4=23此时sinQ 最小为13=33所以,当B1D=1/2时,sinQ最小为3320:(1)由题可得,C:y2=2px,p0,点P(1,2p),Q(1,-2p)因为OPOQ,所以1-2P=0,2P=1,所以抛物线C为:y2=xM(2,0),L:x=1且圆M与L相切,所以圆M的方程为:(x-2)2+y2=1(2)设A1(y12,y1), A2(y22,y2), A3(y32,y3)由抛物线及圆M对称性,不妨设y10若A1A2,A1A3中有一条切线斜率不存在,不

    15、妨设为A1A2则:A1(3,3),A2(3,-3),设A1A3:y-3=k(x-3)即kx-y-3k+3=0因为A1A3与圆M相切,所以-k+3k2+1=1解得:k=33即KA1A3=y3-y1y32-y12=1y3+y1=1y3+3=33所以y3=0,即A3(0,0)此时,直线A2A3与A1A3关于x轴对称,所以直线A2A3与圆M相切。若A1A2,A1A3斜率均存在,则y121且,y123KA1A2=y2-y1y22-y12=1y2+y1直线A1A2:y-y1=1y2+y1(x-y12),即x-(y2+y1)y+y2y1=0同设A1A3:x-(y3+y1)y+y3y1=0,直线A2A3:x-

    16、(y2+y3)y+y2y3=0因为直线A1A2,A1A3均与圆M相切,所以,(2+y2y1)21+(y1+y2)2=1(2+y3y1)21+(y1+y3)2=1,即:(2+y2y1)2=1+(y1+y2)2(2+y3y1)2=1+(y1+y3)2所以y2、y3关于y的方程:(2+yy1)2=1+(y1+y)2即(y12-1)y2+2yy1+3-y12=0的两个根所以:y2+y3=-2y1y12-1,y2y3=3-y12y12-1设M到直线A2A3距离为d则d2=(2+y3y1)21+(y1+y3)2=1所以直线A2A3与圆M相切21:(1)f(x)定义域为(0,+)因为a0且a1,所以f(x)

    17、=axa-1ax-xaaxlna(ax)2,且lna0所以f(x)=axa-1-xalnaax=-xa-1lna(x-alna)ax当a=2时,f(x) =-xln2(x-2ln2)2x所以f(x)增区间为(0,2ln2),减区间为(2ln2,+)(2)题目等价于f(x)=1在(0,+)上有且只有两个解当0a1时,alna0,所以x-alna0所以f(x)0,所以f(x)=1至少有一个解,所以a1此时lna0,alna0,将f(x)定义域改为0,+)此时f(0)=0f(alna)= (alna)aaalna=(a1-1lnalna)a1=1a又y=xa(a1)在(0,+)上,所以a1-1lna

    18、 lna得到(1-1lna)lnaln(lna),得到lna-1ln(lna) (*)令g(x)=x-1-lnx,x(0,+)g(x)=1-0-1/x=(x-1)/x所以g(x)g(1)=1-1-ln1=0由a1得到lna0,得到:g(lna)0所以,f(alna)1所以,a1且ae令b=a1a,又a1,所以b1则f(x)= (xa1ax)a= (xbx)a由贝努力不等式得:bx=(b12x)2=(1+(b12-1)x)21+(b12-1)x2=b12-12x2当xmaxalna,1b12-12时,bx=b12-12x2x0所以,xbx(0,1),得到f(x)(0,1)由f(x)单调性可知:f

    19、(x)=1,在(0,alna)和(alna),+)上各有一解。综上,a取值范围为(1,e)(e,+)22:(1)2=22cosQ,得到:x2+y2=22x即:C:x2-22x+y2=0(2)C:(x-2)2+y2=2设P(x1,y1),则向量AP= (x1-1,y1)向量AM=12AP=(x1-12,y12)所以向量DM=向量OA+向量AM=(x1+2-12,y12)又因为M在上,所以(x1+2-12-2)2+(y12)2=2即:(x1+2-3)22+y122=2所以,C1:(x+2-3)2+y2=4C1:x=3-2+2cosQy=2sinQ,QR圆心距CC1=3-2-2=3-22半径分别为2

    20、和2因为3-222-2,所以C在圆C1内部,没有公共点。23:当x-32时,2x+30,2x-10g(x)=-(2x+3)+(2x-1)=-4当-32x0,2x-10,2x-10g(x)=2x+3-(2x-1)=4(2) f(x+a)g(x)|x+a-2|g(x)|2-a+a-2|g(2-a)g(2-a)0 有图像可知2-a-12a52a+123f(12+a)g(12)a+12-24a112下证当a112时,f(x+a)g(x)当x-12,g(x)0f(x+a)当-12x12时,g(x)=4x+ax+a-12+a-12+112=5f(x+a)=|x+a-2|=x+a-2x+a-2-(4x-2)=a-3x-4112-3*12-4=0综上,a取值范围为112,+)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021年全国甲卷高考理科数学真题及答案.doc
    链接地址:https://www.163wenku.com/p-2614000.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库