传热学ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《传热学ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传热学 ppt 课件
- 资源描述:
-
1、.第一章第一章 绪绪 论论.1-0 概概 述述一、基本概念一、基本概念v1 1 、传热学、传热学 v 传热学是研究热量传递规律的学科。传热学是研究热量传递规律的学科。 v 1) 1)物体内只要存在温差,就有热量从物物体内只要存在温差,就有热量从物体的高温部分传向低温部分;体的高温部分传向低温部分; v 2) 2)物体之间存在温差时,热量就会自发物体之间存在温差时,热量就会自发的从高温物体传向低温物体。的从高温物体传向低温物体。 .2 、热量传递过程、热量传递过程 根据物体温度与时间的关系,热量传递过根据物体温度与时间的关系,热量传递过程可分为两类:程可分为两类:( 1 1 )稳态传热过程;)稳
2、态传热过程;( 2 2 )非稳态传热过程。)非稳态传热过程。 1 1 )稳态传热过程(定常过程)稳态传热过程(定常过程) 凡是物体中各点温度不随时间而变的热传凡是物体中各点温度不随时间而变的热传递过程均称稳态传热过程。递过程均称稳态传热过程。 . 2 2 )非稳态传热过程(非定常过程)非稳态传热过程(非定常过程) 凡是物体中各点温度随时间的变化而凡是物体中各点温度随时间的变化而变化的热传递过程均称非稳态传热过程。变化的热传递过程均称非稳态传热过程。 各种热力设备在持续不变的工况下运各种热力设备在持续不变的工况下运行时的热传递过程属稳态传热过程;而在启动、行时的热传递过程属稳态传热过程;而在启动
3、、停机、工况改变时的传热过程则属停机、工况改变时的传热过程则属 非稳态传非稳态传热过程。热过程。 .二、讲授传热学的重要性及必要性二、讲授传热学的重要性及必要性 1 1 、传热学是热工系列课程教学的主要内容、传热学是热工系列课程教学的主要内容之一,是建环专业必修的专业基础课。是之一,是建环专业必修的专业基础课。是否能够熟练掌握课程的内容,直接影响到否能够熟练掌握课程的内容,直接影响到后续专业课的学习效果。后续专业课的学习效果。 2 2 、传热学在生产技术领域中的应用十分广、传热学在生产技术领域中的应用十分广泛。如:泛。如:(1) (1) 日常生活中的例子:日常生活中的例子:.a a 人体为恒温
4、体。若房间里气体的温度在人体为恒温体。若房间里气体的温度在夏天和冬天都保持夏天和冬天都保持2020度,那么在冬天与夏天、度,那么在冬天与夏天、人在房间里所穿的衣服能否一样?为什么?人在房间里所穿的衣服能否一样?为什么?b b 夏天人在同样温度(如:夏天人在同样温度(如:2525度)的空气度)的空气和水中的感觉不一样。为什么?和水中的感觉不一样。为什么?c c 北方寒冷地区,建筑房屋都是双层玻璃,北方寒冷地区,建筑房屋都是双层玻璃,以利于保温。如何解释其道理?越厚越好?以利于保温。如何解释其道理?越厚越好?(1) 日常生活中的例子:日常生活中的例子:.(2) (2) 特别是在下列技术领域大量存在
5、传热问题特别是在下列技术领域大量存在传热问题动力、化工、制冷、建筑、机械制造、新动力、化工、制冷、建筑、机械制造、新能源、微电子、核能、航空航天、微机电能源、微电子、核能、航空航天、微机电系统(系统(MEMSMEMS)、新材料、军事科学与技术、)、新材料、军事科学与技术、生命科学与生物技术生命科学与生物技术.(3) (3) 几个特殊领域中的具体应用几个特殊领域中的具体应用a a 航空航天:高温叶片气膜冷却与发汗冷航空航天:高温叶片气膜冷却与发汗冷却;火箭推力室的再生冷却与发汗冷却;却;火箭推力室的再生冷却与发汗冷却;卫星与空间站热控制;空间飞行器重返大卫星与空间站热控制;空间飞行器重返大气层冷
6、却;超高音速飞行器(气层冷却;超高音速飞行器(Ma=10Ma=10)冷却;)冷却;核热火箭、电火箭;微型火箭(电火箭、核热火箭、电火箭;微型火箭(电火箭、化学火箭);太阳能高空无人飞机化学火箭);太阳能高空无人飞机.b b 微电子:微电子: 电子芯片冷却电子芯片冷却c c 生物医学:肿瘤高温热疗;生物芯片;生物医学:肿瘤高温热疗;生物芯片;组织与器官的冷冻保存组织与器官的冷冻保存d d 军军 事:飞机、坦克;激光武器;弹药事:飞机、坦克;激光武器;弹药贮存贮存e e 制制 冷:跨临界二氧化碳汽车空调冷:跨临界二氧化碳汽车空调/ /热泵;热泵;高温水源热泵高温水源热泵f f 新能源:太阳能;燃料
7、电池新能源:太阳能;燃料电池.三、传热学的特点、研究对象及研究方法三、传热学的特点、研究对象及研究方法 v1 1 )理论性、应用性强)理论性、应用性强 v 传热学是热工系列课程内容和课程体系传热学是热工系列课程内容和课程体系设置的主要内容之一。是一门理论性、应设置的主要内容之一。是一门理论性、应用性极强的专业基础课,在热量传递的理用性极强的专业基础课,在热量传递的理论分析中涉及到很深的数学理论和方法。论分析中涉及到很深的数学理论和方法。在生产技术领域应用十分广泛。传热学的在生产技术领域应用十分广泛。传热学的发展促进了生产技术的进步。发展促进了生产技术的进步。 1、特点、特点.v2) 2) 有利
8、于创造性思维能力的培养有利于创造性思维能力的培养 v 传热学是建筑环境与设备工程专业的主传热学是建筑环境与设备工程专业的主干专业课之一,在教学中重视学生在学习过干专业课之一,在教学中重视学生在学习过程中的主体地位,启迪学生学习的积极性,程中的主体地位,启迪学生学习的积极性,在时间上给学生留有一定的思维空间。从而在时间上给学生留有一定的思维空间。从而进一步培养创新的思维能力。对综合性、应进一步培养创新的思维能力。对综合性、应用性强的传热问题都有详细地分析讨论。同用性强的传热问题都有详细地分析讨论。同时介绍了传热学的发展动态和前景。从而给时介绍了传热学的发展动态和前景。从而给学生开辟了广阔且纵深的
9、思考空间。学生开辟了广阔且纵深的思考空间。 .v3 3 )教育思想发生了本质性的变化)教育思想发生了本质性的变化 v 传热学课程教学内容的组织和表达方传热学课程教学内容的组织和表达方面从以往单纯的为后续专业课学习服务转面从以往单纯的为后续专业课学习服务转变到重点培养学生综合素质和能力方面,变到重点培养学生综合素质和能力方面,这是传热学课程理论联系实际的核心。从这是传热学课程理论联系实际的核心。从实际工程问题中、科学研究中提炼出综合实际工程问题中、科学研究中提炼出综合分析题,对培养学生解决分析综合问题的分析题,对培养学生解决分析综合问题的能力起到积极的作用。能力起到积极的作用。 .v2 、研究对
10、象、研究对象 v 传热学研究的对象是热量传递规律。传热学研究的对象是热量传递规律。 v3 3 、研究方法、研究方法 v 研究的是由微观粒子热运动所决定研究的是由微观粒子热运动所决定的宏观物理现象,而且主要用经验的方法的宏观物理现象,而且主要用经验的方法寻求热量传递的规律,认为研究对象是个寻求热量传递的规律,认为研究对象是个连续体,即各点的温度、密度、速度是坐连续体,即各点的温度、密度、速度是坐标的连续函数,即将微观粒子的微观物理标的连续函数,即将微观粒子的微观物理过程作为宏观现象处理。过程作为宏观现象处理。 .由前可知,热力学的研究方法仍是如此,但由前可知,热力学的研究方法仍是如此,但是热力学
11、虽然能确定传热量(稳定流能量方是热力学虽然能确定传热量(稳定流能量方程),但不能确定物体内温度分布。程),但不能确定物体内温度分布。4、学习目的、学习目的 通过学习能熟练掌握传热过程的基本规通过学习能熟练掌握传热过程的基本规律、实验测试技术及分析计算方法,从而达律、实验测试技术及分析计算方法,从而达到认识、控制、优化传热过程的目的。到认识、控制、优化传热过程的目的。 .1-2 热量传递的三种基本方式热量传递的三种基本方式 一、导热(热传导)一、导热(热传导) 1 、概念、概念 定义:定义:物体各部分之间不发生相对位物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观移时,依靠分子、原
12、子及自由电子等微观粒子的热运动而产生的热量传递称导热。粒子的热运动而产生的热量传递称导热。 如:固体与固体之间及固体内部的热如:固体与固体之间及固体内部的热量传递。量传递。 .从微观角度分析气体、液体、导电固体与从微观角度分析气体、液体、导电固体与非金属固体的导热机理。非金属固体的导热机理。 ( 1 1 )气体中)气体中:导热是气体分子不规:导热是气体分子不规则热运动时相互碰撞的结果,温度升高,则热运动时相互碰撞的结果,温度升高,动能增大,不同能量水平的分子相互碰撞,动能增大,不同能量水平的分子相互碰撞,使热能从高温传到低温处。使热能从高温传到低温处。 .v( 2 2 )导电固体:)导电固体:
13、其中有许多自由电子,其中有许多自由电子,它们在晶格之间像气体分子那样运动。自它们在晶格之间像气体分子那样运动。自由电子的运动在导电固体的导热中起主导由电子的运动在导电固体的导热中起主导作用。作用。 v( 3 3 )非导电固体:)非导电固体:导热是通过晶格结构导热是通过晶格结构的振动所产生的弹性波来实现的,即原子、的振动所产生的弹性波来实现的,即原子、分子在其平衡位置附近的振动来实现的。分子在其平衡位置附近的振动来实现的。 .v( 4 4 )液体的导热机理:)液体的导热机理:存在两种不同的存在两种不同的观点:第一种观点类似于气体,只是复杂些,观点:第一种观点类似于气体,只是复杂些,因液体分子的间
14、距较近,分子间的作用力对因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)原子、分子在其平衡位置附近的振动产生的)的作用。的作用。 说明:只研究导热现象的宏观规律。说明:只研究导热现象的宏观规律。 .2 2 、导热的基本规律、导热的基本规律 v1 1 )傅立叶定律)傅立叶定律v( 1822 1822 年,法国物理学家)年,法国物理学家) 如图如图 1-1 1-1 所示的两个表面分别维持均所示的两个表面分别维持均匀恒定
15、温度的平板,是个一维导热问题。对匀恒定温度的平板,是个一维导热问题。对于于x x方向上任意一个厚度为的微元层来说,方向上任意一个厚度为的微元层来说,根据傅里叶定律,单位时间内通过该层的导根据傅里叶定律,单位时间内通过该层的导热热量与当地的温度变化率及平板面积热热量与当地的温度变化率及平板面积A A成成正比,即正比,即.dxdtA 式中式中 是比例系数,称为是比例系数,称为热导率热导率,又称,又称导热系数导热系数,负号表示热量传递的方向与温,负号表示热量传递的方向与温度升高的方向相反。度升高的方向相反。 (1-1).v2 2 )热流量)热流量 v单位时间内通过某一给定面积的热量称为单位时间内通过
16、某一给定面积的热量称为热流量,记为热流量,记为 ,单位,单位 w w。 v3 3 )热流密度(面积热流量)热流密度(面积热流量) v单位时间内通过单位面积的热量称为热流单位时间内通过单位面积的热量称为热流密度,记为密度,记为 q q ,单位,单位 w/ w/ 。 v当物体的温度仅在当物体的温度仅在 x x 方向放生变化时,方向放生变化时,按傅立叶定律,热流密度的表达式为按傅立叶定律,热流密度的表达式为: : .dxdtAq 说明:傅立叶定律又称导热基本定律,式说明:傅立叶定律又称导热基本定律,式( 1-1 1-1 )、()、( 1-2 1-2 )是一维稳态导热时)是一维稳态导热时傅立叶定律的数
17、学表达式。通过分析可知:傅立叶定律的数学表达式。通过分析可知: (1-2).v( 1 1 )当温度)当温度 t t 沿沿 x x 方向增加时,方向增加时, 而而 q q ,说明此时热量沿,说明此时热量沿 x x 减小减小的方向传递;的方向传递; v( 2 2 )反之,当)反之,当 0 0 q0 ,说,说明热量沿明热量沿 x x 增加的方向传递。增加的方向传递。 v( 3 3 )导热系数)导热系数 表征材料导热性能表征材料导热性能优劣的参数,是一种物性参数,单位:优劣的参数,是一种物性参数,单位: w/mk w/mk 。 dxdtdxdt.v 不同材料的导热系数值不同,即使同一种不同材料的导热系
18、数值不同,即使同一种材料导热系数值与温度等因素有关。金属材料导热系数值与温度等因素有关。金属材料最高,良导电体,也是良导热体,液材料最高,良导电体,也是良导热体,液体次之,气体最小。体次之,气体最小。 .二、对流二、对流 1 、基本概念、基本概念 1) 1) 对流:对流:是指由于流体的宏观运动,从而使是指由于流体的宏观运动,从而使流体各部分之间发生相对位移,冷热流体流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递过程。相互掺混所引起的热量传递过程。 对流仅发生在流体中,对流的同时必对流仅发生在流体中,对流的同时必伴随有导热现象。伴随有导热现象。 .2 、对流换热的分类、对流换热的分
19、类 1 1)根据对流换热时)根据对流换热时是否发生相变是否发生相变分:有分:有相变的对流换热和无相变的对流换热。相变的对流换热和无相变的对流换热。 2 2)根据引起)根据引起流动的原因流动的原因分:自然对流和分:自然对流和强制对流。强制对流。 2) 2) 对流换热对流换热:流体流过一个物体表面时的流体流过一个物体表面时的热量传递过程,称为对流换热。热量传递过程,称为对流换热。 .1 1 )自然对流:)自然对流: 由于流体冷热各部分的密度不同而引起流体由于流体冷热各部分的密度不同而引起流体的流动。的流动。 如:暖气片表面附近受热空气的向上流动。如:暖气片表面附近受热空气的向上流动。 2 2 )强
20、制对流:)强制对流: 流体的流动是由于水泵、风机或其他压差作流体的流动是由于水泵、风机或其他压差作用所造成的。用所造成的。 3 3 )沸腾换热及凝结换热:)沸腾换热及凝结换热: 液体在热表面上沸腾及蒸汽在冷表面上凝液体在热表面上沸腾及蒸汽在冷表面上凝结的对流换热,称为沸腾换热及凝结换热(相变结的对流换热,称为沸腾换热及凝结换热(相变对流沸腾)。对流沸腾)。 .3 、对流换热的基本规律、对流换热的基本规律 流体被加热时:流体被加热时: 流体被冷却时流体被冷却时:)(fwtthq )(wftthq 式中,式中, 及及 分别为壁面温度和流体分别为壁面温度和流体温度,温度,。 ftwt(1-3)(1-
21、4).v如果把温差(亦称温压)记为如果把温差(亦称温压)记为 ,并约,并约定永远取正值,则定永远取正值,则牛顿冷却公式牛顿冷却公式可表示为可表示为thq tAh 其中其中 h h 比例系数(表面传热系数)比例系数(表面传热系数) 单位单位 。 2W/ mK(1-5)(1-6)t . h h 的物理意义:的物理意义:单位温差作用下通过单位单位温差作用下通过单位面积的热流量。面积的热流量。 表面传热系数的大小与传热过程中的许多因表面传热系数的大小与传热过程中的许多因素有关。它不仅取决于物体的物性、换热表素有关。它不仅取决于物体的物性、换热表面的形状、大小相对位置,而且与流体的流面的形状、大小相对位
22、置,而且与流体的流速有关。速有关。 .一般地,一般地,就介质而言:就介质而言:水的对流换热比空气水的对流换热比空气强烈;强烈; 就换热方式而言:就换热方式而言:有相变的强于无相变的;有相变的强于无相变的;强制对流强于自然对流。强制对流强于自然对流。 对流换热研究的基本任务:对流换热研究的基本任务: 用理论分析或用理论分析或实验的方法推出各种场合下表面换热导数的实验的方法推出各种场合下表面换热导数的关系式。关系式。 .三、热辐射三、热辐射 1、基本概念、基本概念 1 1 )辐射和热辐射)辐射和热辐射 物体通过电磁波来传递能量的方式称物体通过电磁波来传递能量的方式称为辐射。因热的原因而发出辐射能的
23、现象称为辐射。因热的原因而发出辐射能的现象称为热辐射。为热辐射。 2 2 )辐射换热)辐射换热 辐射与吸收过程的综合作用造成了以辐射与吸收过程的综合作用造成了以辐射方式进行的物体间的热量传递称辐射换辐射方式进行的物体间的热量传递称辐射换热。热。 .v自然界中的物体都在不停的向空间发出热自然界中的物体都在不停的向空间发出热辐射,同时又不断的吸收其他物体发出的辐射,同时又不断的吸收其他物体发出的辐射热。辐射热。 v说明:辐射换热是一个动态过程,当物体说明:辐射换热是一个动态过程,当物体与周围环境温度处于热平衡时,辐射换热与周围环境温度处于热平衡时,辐射换热量为零,但辐射与吸收过程仍在不停的进量为零
24、,但辐射与吸收过程仍在不停的进行,只是辐射热与吸收热相等。行,只是辐射热与吸收热相等。 .3 3 )导热、对流、辐射的评述)导热、对流、辐射的评述 导热、对流两种热量传递方式,只在有物导热、对流两种热量传递方式,只在有物质存在的条件下,才能实现,而热辐射不需质存在的条件下,才能实现,而热辐射不需中间介质,可以在真空中传递,而且在真空中间介质,可以在真空中传递,而且在真空中辐射能的传递最有效。中辐射能的传递最有效。 在辐射换热过程中,不仅有能量的转换,在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。而且伴随有能量形式的转化。 .v在辐射时,辐射体内热能在辐射时,辐射体内热能 辐射能
25、;在吸收时,辐射能;在吸收时,辐射能辐射能 受射体内热能,因此,辐射换热过程受射体内热能,因此,辐射换热过程是一种能量互变过程。是一种能量互变过程。 辐射换热是一种双向热流同时存在的换热过程,辐射换热是一种双向热流同时存在的换热过程,即不仅高温物体向低温物体辐射热能,而且低温即不仅高温物体向低温物体辐射热能,而且低温物体向高温物体辐射热能,物体向高温物体辐射热能, .辐射换热不需要中间介质,在真空中即辐射换热不需要中间介质,在真空中即可进行,而且在真空中辐射能的传递最有可进行,而且在真空中辐射能的传递最有效。因此,又称其为非接触性传热。效。因此,又称其为非接触性传热。 热辐射现象仍是微观粒子性
展开阅读全文