Tio2材料的性质及应用-ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《Tio2材料的性质及应用-ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Tio2 材料 性质 应用 ppt 课件
- 资源描述:
-
1、1ppt课件u纳米TiO2光催化剂简介u纳米TiO2光催化剂的制备u纳米TiO2光催化剂的表征u纳米TiO2光催化剂的应用u总结2ppt课件u纳米TiO2光催化剂简介什么是多相光催化剂? 多相光催化多相光催化是指在有光参与的情况下,发生在催化剂及表面吸附物(如H2O,O2分子和被分解物等)多相之间的一种光化学反应。 光催化反应是光和物质之间相互作用的多种方式之一,是光反应和催化反应的融合,是光和催化剂同时作用下所进行的化学反应。 纳米TiO2是一种新型的无机金属氧化物材料,它是一种N型半导体材料,由于具有较大的比表面积和合适的禁带宽度,因此具有光催化氧化降解一些化合物的能力,纳米TiO2具有优
2、异的光催化活性,并且价格便宜,无毒无害等优点因此被广泛的应用。 纳米TiO2粉体3ppt课件 半导体是指电导率在金属电导率(约104106/cm)和电介质电导率( 1-10 /cm)之间的物质,一般的它的禁带宽度Eg小于3eV。 半导体的能带结构 导带价带 禁带Eg 3eV掺杂半导体 N型半导体 (正电荷中心起提供电子的作用,依靠自由电子进行导电) P型半导体(负电荷中心起提供电子的作用,依靠空穴进行导电)半导体本征半导体(纯的半导体,不含有任何杂质,禁带中不存在半导体电子的状态,即缺陷能级)4ppt课件 实际半导体中,由于半导体材料中不可避免地存在杂质和各类缺陷,使电子和空穴束缚在其周围,成
3、为捕获电子和空穴的陷阱,产生局域化的电子态,在禁带中引入相应电子态的能级。N型半导体的缺陷能级Ed靠近导带,P型半导体的Ea靠近价带。 EcEdEv价带EcEaEv导带价带 导带 P型半导体的能级N型半导体的能级5ppt课件C:Documents and SettingsAdministrator桌面03_02_07_1.swfP型半导体中电子转移示意图N型半导体中电子转移示意图 C:Documents and SettingsAdministrator桌面03_02_08_1.Mpeg.swfPN节C:Documents and SettingsAdministrator桌面03_02_09
4、_1.swfC:Documents and SettingsAdministrator桌面03_02_09_2.swf6ppt课件为什么要用纳米半导体光催化剂?(量子限域效应) 大的半导体粒子和微粒(分子簇)的空间电子状态 粒子半导体E0/团簇非定域分子轨道非定域分子轨道直径 导带价带距离浅陷阱深陷阱/ 表面态深陷阱深陷阱表面态(表面界面效应)7ppt课件 LUMO HOMO 原子 轨道 分子 轨道 簇物 量子化 粒子 半导体 N=1 N=2 N=10 N=2000 N2000 能 量 导 带 价 带 半导体能带宽度与粒子大小N()的关系示意图8ppt课件 各种常用半导体的能带宽度和能带边缘电
5、位示意图(pH = 0)-101234TiO2WO3ZnO3.2 3.03 2.8SnO23.8ZnS3.6CdS2.4Fe2O32.2ENHEH+/H2O2/H2O.SrTiO33.2 1.1Si9ppt课件常见的光催化材料 photocatalyst Ebg(eV) photocatalyst Ebg(eV)Si 1.1ZnO 3.2TiO2(Rutile) 3.0TiO2(Anatase) 3.2WO3 2.7CdS 2.4ZnS 3.7SnO2 3.8SiC 3.0CdSe 1.7Fe2O3 2.2-Fe2O3 3.1ZnO在水中不稳定,会在粒子表面生成Zn(OH)2铁的氧化物会发生阴
6、极光腐蚀金属硫化物在水溶液中不稳定,会发生阳极光腐蚀,且有毒!10ppt课件 1972年,Fujishima 在N-型半导体TiO2电极上发现了水的光催化分解作用,从而开辟了半导体光催化这一新的领域。 1977年,Yokota T等发现了光照条件下,TiO2对环丙烯环氧化具有光催化活性,从而拓宽了光催化反应的应用范围,为有机物的氧化反应提供了一条新思路。 近年来,光催化技术在环保、卫生保健、自洁净等方面的应用研究发展迅速,半导体光催化成为国际上最活跃的研究领域之一。光催化技术的发展历史 11ppt课件1.水中所含多种有机污染物可被完全降解成CO2,H2O等,无机污染物被氧化或还原为无害物2.不
7、需要另外的电子受体3.合适的光催化剂具有廉价无毒,稳定及可重复利用等优点4.可以利用太阳能作为光源激活光催化剂5.结构简单,操作容易控制,氧化能力强,无二次污染TiO2光催化剂的优点12ppt课件TiO2的结构与性质金红石型锐钛矿型TiO2晶型结构示意图13ppt课件 Crystal structuresRelative density Type of latticeLattice constantLengths of Ti-O bond/nmEg/eVacanatase3.84Tetragonal system 5.279.370.1953.2rutile4.22Tetragonal sys
8、tem 9.055.80.1993brookite4.13Rhombic systemTiO2晶体的基本物性14ppt课件锐钛矿相和金红石相TiO2的能带结构CB/e-VB/h+CB/e-3.2eV3.0eVVB/h+0.2eVl两者的价带位置相同,光生空穴具用相同的氧化能力;但锐钛矿相导带的电位更负,光生电子还原能力更强l混晶效应:锐钛矿相与金红石相混晶氧化钛中,锐钛矿表面形成金红石薄层,这种包覆型复合结构能有效地提高电子-空穴的分离效率15ppt课件 TiO2光催化材料的特性1. 原料来源丰富,廉价。但光致电子和空穴的分离转移速度慢,复合率高,导致光催化量子效率低2.光催化活性高(吸收紫外
9、光性能强;禁带和导带之间能隙大;光生电子的还原性和空穴的氧化性强)。只能用紫外光活化,太阳光利用率低3.化学性质稳定(耐酸碱和化学腐蚀),无毒。但粉末状TiO2在使用的过程中存在分离回收困难等问题优缺点16ppt课件TiO2光催化剂的催化机理半导体的能带结构 半导体存在一系列的满带,最上面的满带成为价带(valence band,VB)存在一系列的空带,最下面的空带称为导带(conduction band,CB);价带和导带之间为禁带。 当用能量等与或大于禁带宽度(Eg)的光照射时,半导体价带上的电子可被激发跃迁到导带,同时在价带上产生相应的空穴,这样就在半导体内部生成电子(e-)空穴(h+)
10、对。17ppt课件半导体价带的光激发固体中的光激发和脱激过程空气和溶液中通常是氧18ppt课件 光生电子空穴对的氧化还原机理19ppt课件TiO2光催化主要反应步骤 hvH+VBE-CB复合 价带空穴诱发氧化反应捕获价带空穴生成Titanol基团导带电子诱发还原反应捕获导带电子生成Ti3+TiO220ppt课件 e-h+Ox- Red+ CO2,Cl,H+,H2O Red TiTiHOTiO2光催化反应基本原理及主要基元反应步骤 21ppt课件光催化反应类型u反应物被光激发后,在催化剂作用下引起的催化反应:u由激发的催化剂K*所引起的催化反应u催化剂和反应物有很强的相互作用,如生成配合物,后者
11、再经激发进行的催化反应u在经多次激发后的催化剂作用下引发的催化反应u光催化氧化-还原反应A+ hvA*A* +K(AK)*B + KK+ hvK*K* +A(AK)*B + KA+AKAK +hv(AK)*B + KK22ppt课件 TiO2光催化活性的光催化的影响因素lTiO2晶体结构的影响 在 TiO2的三种晶型锐钛矿、金红石和板钛矿中,锐钛矿表现出较高的活性,原因如下: 1.锐钛矿较高的禁带宽度使其电子空穴对具有更正或更负的电位,因而具有较高的氧化能力 2.锐钛矿表面吸附H2O,O2及OH-的能力较强,导致光催化活性较高 3.在结晶过程中锐钛矿晶粒通常具有较小的尺寸及较大的比表面积,对光
12、催反应有利23ppt课件lTiO2表面结构的影响 光催化过程主要在催化剂表面发生,对于单纯的TiO2光催化剂,影响其光催化剂,影响其光催化活性的表面性质如下: 1表面积,尤其是充分接受光照的表面积2.表面对光子的吸收能力3.表面对光生电子和空穴捕获并使其有效分离的能力4.电荷在表面向底物转移的能力24ppt课件l催化剂颗粒直径的影响 催化剂粒子的粒径越小,单位质量的粒子数越多,比表面积越大,催化活性越高;但比表面积的增大,意味着复合中心的增多,如果当复合反应起主导作用的时候,粒径的减小会导致活性的降低 当粒径在110nm级时会产生量子效应半导体禁带明显变宽,电子空穴对的氧化能力增强半导体电荷迁
13、移速率增加,电子与空穴的复合几率降低活性增大25ppt课件l溶液pH值的影响TiO2在水中的零电点(电荷为零的点)为pH=6.25当溶液pH值较低时,TiO2表面质子化,带正电荷,有利于光生电子向表面迁移当溶液pH值较高时,由于OH-的存在,TiO2表面带负电荷,有利于光生空穴向表面迁移对于不同的物质光催化降解有不同的最佳pH值,而且对于降解的影响非常显著实践证明,在pH=39时,TiO2通常具有较好的催化活性26ppt课件 l温度的影响 1.当氧的分压较高(如PO2=101325Pa),底物S的浓度较低时,温度对催化剂表面氧的吸附数量影响不大,温度效应取决于温度对有机物氧化速率的影响 2.当
14、氧的分压较低(如PO2 5066.25Pa),底物S的浓度较高(大于10-3mol/dm-3)时。温度效应取决于温度对有机底物和氧吸附性能的影响l其他影响因素 除了前面提过的影响因素外,外加氧化剂、光源、光强、反应液中的盐等外界条件都可以对TiO2的光催化活性产生一定的影响。27ppt课件 提高TiO2光催化活性的途径 目前的TiO2光催化剂存在两个问题: 量子效率低 太阳能利用率低解决方法:u贵金属沉积u复合半导体u离子掺杂修饰u表面光敏化 u表面还原处理u表面鳌合及衍生作用u超强酸化28ppt课件l贵金属沉积沉积Ag后的TiO2光催化性能29ppt课件l复合半导体 偶合型复合半导体电荷分离
15、示意图偶合型复合半导体电荷分离示意图 SnO2TiO2电子转移过程示意图 30ppt课件包覆型复合半导体电荷分离示意图包覆型复合半导体电荷分离示意图hvSnO2hvCBVBVBTiO2AA+SnO2TiO2电子转移示意图31ppt课件l离子掺杂修饰 掺杂离子提高TiO2光催化效率的机制可以概括为以下几个方面:1.掺杂可以形成捕获中心,价态高于Ti4+的金属离子捕获电子,低于Ti4+的金属离子捕获空穴,抑制电子-空穴复合2.掺杂可以形成掺杂能级,使能量较小的光子能激发掺杂能级上捕获的电子和空穴,提高光子利用率3.掺杂可以导致载流子扩散长度增大,从而延长了电子和空穴寿命,抑制复合4.掺杂可以形成晶
16、格缺陷,有利于形成更多的Ti3+氧化中心32ppt课件 氮掺杂的二氧化钛带隙结构 33ppt课件l表面光敏化 S*ShvCBVB一AVBCBCBVBASAS一 光敏化的作用机理敏化剂激发后电子转移电子转移给受体催化剂再生34ppt课件l表面还原处理一方面,随着TiO2表面Ti3+位的增多,TiO2的费米能级升高,界面势垒增大,减少了电子在表面的积累及与空穴的进一步复合另一方面,在TiO2表面,Ti3+通过吸附分子氧,也形成了捕获光生电子的部位 对于TiO2光催化反应,电子向分子氧的转移是光催化氧化反应的速度限制步骤,故表面Ti3+数量越多,越有利于电子向分子氧的转移。35ppt课件l表面螯合及
17、衍生作用 表面衍生作用及金属氧化 物在TiO2表面的螯合可进一步改善界面电子传递效果,进而影响TiO2光催化活性。1.可有效延长光生电子-空穴的复合时间。2.能造成光催化剂TiO2的导带向更负方向移动。l超强酸化 增强催化剂表面酸性是提高光催化效率的一条新途径。 一方面,通过二氧化钛的SO42-表面修饰(超强酸化),是催化剂结构明显改善,有效地抑制了晶相转变,使得具有高光催化本证活性的锐钛矿含量增加、晶粒度变小、比表面积增大、表面氧缺陷位增加。 另一方面,SO42-/TiO2超强酸催化剂表面由于受到SO42-诱导的相邻L酸中心和B酸中心组成了基团协同作用的超强酸中心增大了表面酸量及氧的吸附量。
18、36ppt课件u纳米TiO2的制备及表征二氧化钛合成物理法化学法机械粉碎法 液相法 气相法 液相沉淀法 溶胶-凝胶法 醇盐水解法 微乳液法 水热法 TiCl4氢氧焰水解法 TiCl4气相氧化法 钛醇盐气相氧化法 钛醇盐气相水解法 钛醇盐气相热解法37ppt课件 制备方法制备方法 优点优点 不足不足 液相沉淀法粒径小,原料便宜易得工艺流程长、废液多、产物损失较大,纯度低 溶胶-凝胶法粒径小,分布窄,晶型为锐钛矿型,纯度高,热稳定性好有机溶剂来控制水解速度,致使成本较高 醇盐水解法常温进行,设备简单,能耗少,纯度高大量有机溶剂来控制水解速度,致使成本较高 微乳液法可有效控制TiO2颗粒的尺寸 易团
19、聚 水热法晶粒完整,粒径小,分布均匀,原料要求不高,成本相对较低反应条件为高温、高压,材质要求高液相法38ppt课件 l液相沉淀法传统的方法(前躯体:TiCl4,Ti(SO4)2)改进后的方法(前躯体:TiOCl2不加碱性沉淀剂)TiOCl2 水溶液65 以下水解100 左右水解白色晶型沉淀白色晶型沉淀加热干燥加热干燥金红石型纳米TiO2粉体锐钛矿型纳米TiO2粉体无定形的Ti(OH)4TiCl4或Ti(SO4)2过滤洗涤干燥600煅烧锐钛矿型TiO2800煅烧金红石型TiO2氨水,NaOH, (NH4)2CO3 39ppt课件l溶胶-凝胶法(Sol-Gel) (前驱体(TNB)混合液均匀混合
展开阅读全文