第十章课件奥本海姆本信号与系统.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第十章课件奥本海姆本信号与系统.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十 课件 信号 系统
- 资源描述:
-
1、Sichuan University Ch 10 The z-Transform1The Z-TransformThe primary focus of this chapter will be on:1. The z-Transform and the Region of Convergence for the z-Transform2. The Inverse z-Transform3. Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot4. Properties of the z-Transform
2、and some Common z-Transform Pairs5. Analysis and Characterization of LTI Systems Using z-Transform6. System Function Algebra and Block Diagram Representations7. The Unilateral z-TransformSichuan University Ch 10 The z-Transform210.0 INTRODUCTIONl z-transform is the discrete-time counterpart of the L
3、aplace transform, the motivation for and properties of the z-transform closely parallel those of the Laplace transform. However, they have some important distinctions that arise from the fundamental differences between continuous-time and discrete-time signals and systems. l z-transform expand the a
4、pplication in which Fourier analysis can be used. Sichuan University Ch 10 The z-Transform310.1 The z-TransformThe z-transform of a general discrete-time signal xn is defined asnnznxzX)(where z is a complex variable. We will denote the transform relationship between xn and X(z) as ( )Zx nX zThe defi
5、nation of the z-transform :The relationship between xn and X(z) Sichuan University Ch 10 The z-Transform4The relationship between the z-transform and the discrete-time Fourier transformExpressing the complex variable z in polar form as,jreznnjjrenxreX)()(nnjnernx)(jreX is the Fourier transform of xn
6、 multiplied by a real exponential So, the z-transform is an extension of the DTFT.nrFor r = 1, or equivalently, |z| = 1, z-transform equation reduces to the Fourier transform. )()(nxeXzXjezjFSichuan University Ch 10 The z-Transform5The z-transform reduces to the Fourier transform for values of z on
7、the unit circle.z-plane 1ImReUnit circlejezDifferent from the continuous-time case, the z-transform reduces to the Fourier transform on the contour in the complex z-plane corresponding to a circle with a radius of unity . The z-transform reduces to the discrete-time Fourier transformThe z-transform
8、reduces to the discrete-time Fourier transformSichuan University Ch 10 The z-Transform6In general, the z-transform of a sequence has associated with it a range of values of z for which X(z) converges, and this range of values is referred to as the region of convergence (ROC). For convergence of the
9、z-transform, we require that the Fourier transform of converge. For any specific sequence xn, it is this convergence for some value of r.nrnxIf the ROC includes the unit circle, then the Fourier transform also converges. The region of convergence ( ROC )depends only on r= |z|, just like the ROC in s
10、-plane only depends on Re(s).Sichuan University Ch 10 The z-Transform7.)(01nnnnnzznuzXFor convergence of X(z), we require that nnz01Consequently, the region of convergence is the range of values of z for which 11.zor zThen zzzzzzXnn,11)(101Unit circlez-planeIm a 1 RePole-zero plot and region of conv
11、ergence for Example 10.1 for 0 1Example 10.1 Consider the signal.nunxnSichuan University Ch 10 The z-Transform8( )( )x nu n101( )1nnX zzz1z The ROC does not include the unit circle, consequently, it is impossible to obtain the Fourier transform from ,( )X zzjeImReZ plate1 11()(2)1jjkX eke ,11Zzu nzz
12、 Now Consider the step signalSichuan University Ch 10 The z-Transform9Example 10.2 Determine the z-transform of .1nuanxnnnnznuazX 1)(If , this sum converges andzazX1111)(11zaUnit circlez-planeIma 1 RePole-zero plot and region of convergence for Example 10.2 for 0 11nnnza1nnnza01)(1nnzaazazzaz,111Sic
13、huan University Ch 10 The z-Transform10Example 10.3 Consider a signal that is the sum of two real exponentials: .216317nununxnnThe z-transform is then nnnnnnznuznuzX216317)(13117z21zIm 1/3 1/2 1 3/2 Re12116z121131123111zzz213123zzzzSichuan University Ch 10 The z-Transform11Example 10.4. Consider the
14、 signal:1( )( )( )2(1)2nnx nu nun 10111( )( )221111 212nnnnnnX zzzzz1ROC:22z Generally,the ROC of consists of a ring in the z-plane centered about the origin.( )X z2 21/21/2Z plateImReUnit circleSichuan University Ch 10 The z-Transform12Example 10.5 Consider the signal .4sin31nunnxn312131214/4/nuejn
15、uejnxnjnjThe z-transform of this signal isnnjnnjzejzejzX014/014/31213121)(,|z| 1/3 Im 1/3 1 Re4/314/31231)(jjezezzzX14/3114/3111211121zejzejjjSichuan University Ch 10 The z-Transform13()( )( )( )()iippzzN zX zMD zzz( )X z if the z-transform is rational, its numerator and denominator polynomial can b
16、e factarized. so, the z-transform is chacterized by all its poles and zeros except a constant factor . ( )X zMThe geometric representation of the z-transformthe Pole-Zero plot:( )X zSichuan University Ch 10 The z-Transform14 xn can be only determined by all poles and zeros of X(z) and the ROC of the
17、 X(z). The pole-zero plot, illustrate all poles and zeros of the z-transform in z plane, is the geometric representation of the z-transform .( )X z( )X z The pole-zero plot is especially useful for describing and analyzing the properties of the discrete-time LTI system.Sichuan University Ch 10 The z
18、-Transform1510.2 The Region of Convergence for the z-TransformProperties of the ROC for z-transform:Property 1 The ROC of X(z) consists of a ring in the z-plane centered about the origin.Property 2 The ROC does not contain any poles.Property 3 If xn is of finite duration, then the ROC is the entire
19、z-plane, except possibly z = 0 and/or z = . nnx n rConvergence is dependent only on and not on .rzSichuan University Ch 10 The z-Transform16Example 10.6 Consider the unit sample signal n. 1Znnnn z with an ROC consisting of the entire z-plane, including z = 0 and z = . On the other hand, 111Znnnnzz t
20、he ROC consists of the entire z-plane, including z = but excluding z = 0. Similarly, 11Znnnnzz the ROC consists of the entire z-plane, including z = 0 but excluding z = . Sichuan University Ch 10 The z-Transform17Property 4 If xn is a right-sided sequence, and if the circle is in the ROC, then all f
21、inite values of z for which will also be in the ROC.0rz 0rz Imz-plane ReSichuan University Ch 10 The z-Transform185) Property If xn is a left-sided sequence, and if the circle is in the ROC, then all values of z for which will also be in the ROC.00rz 0rz Imz-plane Re6) Property If xn is two sided, a
22、nd if the circle is in the ROC, then the ROC will consist of a ring in the z-plane that includes the circle . Imz-plane Re0rz 0rz Sichuan University Ch 10 The z-Transform19Sichuan University Ch 10 The z-Transform2011101( )1()NNNNNnnNna zzaX za zazzzapoles:za(order 1)0z (order N-1)zeros:2jkNzae(0,11)
23、kN jIm z Re z(8)N aa0 0(1)N At z=a, the zero cancel the pole. Consequently, there are no poles other than at the origin.Example 10.7 Conside the finite duration xn( )x n ,01,nanN0a 0,othernSichuan University Ch 10 The z-Transform21Example 10.8 Consider a two sided sequence.0,bbnxn 1nubnubnxnn11 ,1Zn
24、b u nzbbz 11111,.1Znb u nzb zb For b 1, there is no common ROC, and thus the sequence will not have a z-transform.For b 1, the ROCs overlap, and thus the z-transform for the composite sequence isbzbbzbzzbbzbbzzX1,11111)(12111Unit circleImb 1/b ReSichuan University Ch 10 The z-Transform22 Property 8
25、If the z-transform X(z) of xn is rational, and if xn is right sided, then the ROC is the region in the z-plane outside the outermost pole i.e., outside the circle of radius equal to the largest magnitude of the poles of X(z). Furthermore, if xn is causal, then the ROC also includes z = . Property 9
展开阅读全文