1分类加法计数原理与分步乘法计数原理2 课件高中数学人教A版(2019)选择性必修第三册.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《1分类加法计数原理与分步乘法计数原理2 课件高中数学人教A版(2019)选择性必修第三册.pptx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1分类加法计数原理与分步乘法计数原理2 课件 高中数学人教A版2019选择性必修第三册 分类 加法 计数 原理 分步 乘法 高中 学人 2019 选择性 必修 第三 下载 _选择性必修 第三册_人教A版(2019)_数学_高中
- 资源描述:
-
1、6.1分类加法计数原分类加法计数原理与分步乘法计数理与分步乘法计数原理(二)原理(二)讲课人:邢启强2复习引入复习引入完成一件事情,有完成一件事情,有n类不同方案类不同方案,在第,在第1类类方案方案中有中有m1种不同的方法,在第种不同的方法,在第2类类方案方案中有中有m2种不同的方法种不同的方法在第在第n类类方案方案中有中有mn种不同的方法种不同的方法.那么完成这件事共有那么完成这件事共有N=m1+m2+ +m 种不同的方法种不同的方法.1.1.分类加法计数原理分类加法计数原理 2.分步乘法计数原理分步乘法计数原理完成一件事情,需要分成完成一件事情,需要分成n个步骤个步骤:做第做第1步有步有m
2、1种不同的方法,做第种不同的方法,做第2步有步有m2种不种不同的方法同的方法做第做第n步有步有mn种不同的方法种不同的方法.那么完成这件事共有那么完成这件事共有N=m1 m2 mn种不同的方法种不同的方法.分类加法计数原理和分步乘法计数原理分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题回答的都是有关做一件事的不同方法的种数问题.区别在于区别在于:分类加法计数原理分类加法计数原理: 针对的是针对的是分类分类问题问题,其中其中各种方法相互独立各种方法相互独立,用其中任何一种方用其中任何一种方法都可以做完这件事法都可以做完这件事;分步乘法计数原理分步乘法计数原理: 针
3、对的是针对的是分步分步问题问题,各个步骤中的方法互相依存各个步骤中的方法互相依存,只有各个步骤只有各个步骤都完成才算做完这件事都完成才算做完这件事.讲课人:邢启强3分类计数原理分类计数原理 分步计数原理分步计数原理区别1区别2区别3完成一件事,共有完成一件事,共有n n类办法,类办法,关键词关键词“分类分类”完成一件事,共分完成一件事,共分n n个步骤,关键个步骤,关键词词“分步分步”每类办法都能独立地完成每类办法都能独立地完成这件事情,它是独立的、这件事情,它是独立的、一次的、且每次得到的是一次的、且每次得到的是最后结果,最后结果,只须一种方法只须一种方法就可完成这件事就可完成这件事。每一步
4、得到的只是中间结果,每一步得到的只是中间结果,任何一步都不能独立完成这任何一步都不能独立完成这件事,缺少任何一步也不能件事,缺少任何一步也不能完成这件事,完成这件事,只有各个步骤只有各个步骤都完成了,才能完成这件事都完成了,才能完成这件事。各类办法是各类办法是互相独立互相独立的。的。各步之间是各步之间是互相互相关联的。关联的。即:即:类类独立,步步关联类类独立,步步关联。复习讲评复习讲评讲课人:邢启强4例题讲评例题讲评例例1.1.计算机编程人员在编写好程序以后需要对程序进行测试,程序员需要知计算机编程人员在编写好程序以后需要对程序进行测试,程序员需要知道到底有多少条执行路径(程序从开始到结束的
5、路线)道到底有多少条执行路径(程序从开始到结束的路线), ,以便知道需要提供多以便知道需要提供多少个测试数据。般地,一个程序模块由许多子模块组成。如图是一个具有许少个测试数据。般地,一个程序模块由许多子模块组成。如图是一个具有许多执行路径的程序模块,它有多少条执行路径?多执行路径的程序模块,它有多少条执行路径? 另外,为了减少测试时间,程序员需要设法减少测试次数,你能帮助程另外,为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方法,以减少测试次数吗?序员设计一个测试方法,以减少测试次数吗?分析:整个模块的任意一条执行路径都分两分析:整个模块的任意一条执行路径都分两步完成
6、:第步完成:第1步是从开始执行到步是从开始执行到A点;第点;第2步步是从是从A点执行到结束,而第点执行到结束,而第1步可由子模块步可由子模块1、子模块子模块2、子模块、子模块3中任何一个来完成;第中任何一个来完成;第2步可由子模块步可由子模块4、子模块、子模块5中任何一个来完成,中任何一个来完成,因此,分析一条指令在整个模块的执行路径因此,分析一条指令在整个模块的执行路径需要用到两个计数原理需要用到两个计数原理讲课人:邢启强5解:由分类加法计数原理,子模块解:由分类加法计数原理,子模块1、子模块、子模块2、子模块、子模块3中的子路径条数共为中的子路径条数共为18+45+28=91;子模块子模块
7、4、子模块、子模块5中的子路径条数共为中的子路径条数共为38+43=81.又由分步乘法又由分步乘法计数原理,整个模块的执行路径条数共为计数原理,整个模块的执行路径条数共为9181=7371.在实际测试中,程序员总是把每一个子模块看成一个黑箱,即通过只考察是否执在实际测试中,程序员总是把每一个子模块看成一个黑箱,即通过只考察是否执行了正确的子模块的方式来测试整个模块,这样,他可以先分别单独测试行了正确的子模块的方式来测试整个模块,这样,他可以先分别单独测试5个模块,个模块,以考察每个子模块的工作是否正常,总共需要的测试次数为以考察每个子模块的工作是否正常,总共需要的测试次数为18+45+28+3
8、8+43=172.再测试各个模块之间的信息交流是否正常,只需要测试程序第再测试各个模块之间的信息交流是否正常,只需要测试程序第1步中的各个子模块步中的各个子模块和第和第2步中的各个子模块之间的信息交流是否正常,需要的测试次数为步中的各个子模块之间的信息交流是否正常,需要的测试次数为32=6.如果每个子模块都工作正常,并且各个子模块之间的信息交流也正常,那么整个如果每个子模块都工作正常,并且各个子模块之间的信息交流也正常,那么整个程序模块就工作正常,这样,测试整个模块的次数就变为程序模块就工作正常,这样,测试整个模块的次数就变为172+6=178.显然,显然,178与与7371的差距是非常大的的
9、差距是非常大的讲课人:邢启强6例题讲评例题讲评例例2通常,我国民用汽车号牌的编号由两部分组成:第一部分为用汉字表示的省、自通常,我国民用汽车号牌的编号由两部分组成:第一部分为用汉字表示的省、自治区、直辖市简称和用英文字母表示的发牌机关代号,第二部分为由阿拉伯数字和英治区、直辖市简称和用英文字母表示的发牌机关代号,第二部分为由阿拉伯数字和英文字母组成的序号,如图所示文字母组成的序号,如图所示. 其中,序号的编码规则为:其中,序号的编码规则为:(1)由由10个阿拉伯数字和除个阿拉伯数字和除O,1之外的之外的24个英文字母组成;个英文字母组成;(2)最多只能有最多只能有2个英文字母个英文字母.如果某
10、地级市发牌机关采用如果某地级市发牌机关采用5位序号编码,那么这个发牌机关最多能发放多少张汽车位序号编码,那么这个发牌机关最多能发放多少张汽车号牌?号牌?分析:分析:由号牌编号的组成可知,序号的个数决定了这个发牌机关所能由号牌编号的组成可知,序号的个数决定了这个发牌机关所能发放的最多号牌数,按序号编码规则可知,每个序号中的数字、字母发放的最多号牌数,按序号编码规则可知,每个序号中的数字、字母都是可重复的,并且可将序号分为三类:没有字母,有都是可重复的,并且可将序号分为三类:没有字母,有1个字母,有个字母,有2个字母,以字母所在位置为分类标准,可将有个字母,以字母所在位置为分类标准,可将有1个字母
11、的序号分为五个个字母的序号分为五个子类,将有子类,将有2个字母的序号分为十个子类。个字母的序号分为十个子类。排队问题排队问题:讲课人:邢启强7解:由号牌编号的组成可知,这个发牌机关所能发放的最多号牌数就是序号的个数解:由号牌编号的组成可知,这个发牌机关所能发放的最多号牌数就是序号的个数.根据序号编码规根据序号编码规则,则,5位序号可以分为三类:没有字母,有位序号可以分为三类:没有字母,有1个字母,有个字母,有2个字母个字母.(1)当没有字母时,序号的每一位都是数字,确定一个序号可以分当没有字母时,序号的每一位都是数字,确定一个序号可以分5个步骤,每一步都可以从个步骤,每一步都可以从10个数字个
12、数字中选中选1个,各有个,各有10种选法,根据分步乘法计数原理,这类号牌张数为种选法,根据分步乘法计数原理,这类号牌张数为1010101010=100000.(2)当有当有1个字母时,这个字母可以分别在序号的第个字母时,这个字母可以分别在序号的第1位、第位、第2位、第位、第3位、第位、第4位或第位或第5位,这类序号可位,这类序号可以分为以分为五个子类五个子类。当第。当第1位是字母时,分位是字母时,分5个步骤确定一个序号中的字母和数字:第个步骤确定一个序号中的字母和数字:第1步,从步,从24个字母个字母中选中选1个放在第个放在第1位,有位,有24种选法;第种选法;第25步都是从步都是从10个数字
13、中选个数字中选1个放在相应的位置,各有个放在相应的位置,各有10种选法,种选法,根据分步乘法计数原理,号牌张数为根据分步乘法计数原理,号牌张数为2410101010=240000.同样,其余四个子类号牌也各有同样,其余四个子类号牌也各有240000张张.根据分类加法计数原理,这类号牌张数一共为根据分类加法计数原理,这类号牌张数一共为240000+240000+240000+240000+240000=1200000.(3)当有当有2个字母时,根据这个字母时,根据这2个字母在序号中的位置,可以将这类序号分为个字母在序号中的位置,可以将这类序号分为十个子类十个子类:第:第1位和第位和第2位,位,第
14、第1位和第位和第3位,第位,第1位和第位和第4位,第位,第1位和第位和第5位,第位,第2位和第位和第3位,第位,第2位和第位和第4位,第位,第2位和第位和第5位,第位,第3位和第位和第4位,第位,第3位和第位和第5位,第位,第4位和第位和第5位位.当第当第1位和第位和第2位是字母时,分位是字母时,分5个步骤确定一个序号中的字母和数字:第个步骤确定一个序号中的字母和数字:第1,2步都是从步都是从24个字母中选个字母中选1个分别放在第个分别放在第1位、第位、第2位,各有位,各有24种选法;第种选法;第35步都是从步都是从10个数字中选个数字中选1个放在相应的位置,各有个放在相应的位置,各有10种选
15、法,根据分步乘法计数原理,号牌张数为种选法,根据分步乘法计数原理,号牌张数为2424101010=576000.同样,其余九个子类号同样,其余九个子类号牌也各有牌也各有576000张张.于是,这类号牌张数一共为于是,这类号牌张数一共为57600010=5760000.综合综合(1)(2)(3),根据分类加法计数原理,这个发牌机关最多能发放的汽车号牌张数为根据分类加法计数原理,这个发牌机关最多能发放的汽车号牌张数为100000+1200000+5760000=7060000.讲课人:邢启强8例例3.从数字从数字1,2,3,4,5中取出中取出3个数字(允许重复)个数字(允许重复),组成三位数,各位
16、数字组成三位数,各位数字之和等于之和等于6,则这样的三位数的个数为则这样的三位数的个数为( ) A.7 B.9 C.10 D.13例题讲评例题讲评排队问题排队问题:解:从数字解:从数字1,2,3,4,5中取出中取出3个数字(允许重复)个数字(允许重复),组成三位数,组成三位数,各位数字之和等于各位数字之和等于6,可分为三类情况:可分为三类情况:(1)当三个数为当三个数为1,1,4时,时,4可以在个位、十位、百位,所以共有可以在个位、十位、百位,所以共有3个这样的三位数;个这样的三位数;(2)当三个数为当三个数为1,2,3时,共有时,共有321=6个这样的三位数;个这样的三位数;(3)当三个数为
展开阅读全文