二次函数实际问题之建立直角坐标系课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二次函数实际问题之建立直角坐标系课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 实际问题 建立 直角 坐标系 课件
- 资源描述:
-
1、解一解一解二解二解三解三探究探究3 图中是抛物线形拱桥,当水面在图中是抛物线形拱桥,当水面在 时,拱顶离水面时,拱顶离水面2m,水面宽水面宽4m,水面下降,水面下降1m时,水面宽度增加了多少?时,水面宽度增加了多少?l继续继续解一解一 以抛物线的顶点为原点,以抛物线的对称轴为以抛物线的顶点为原点,以抛物线的对称轴为 轴,建立平轴,建立平面直角坐标系,如图所示面直角坐标系,如图所示.y可设这条抛物线所表示可设这条抛物线所表示的二次函数的解析式为的二次函数的解析式为:2axy 当拱桥离水面当拱桥离水面2m时时,水面宽水面宽4m即抛物线过点即抛物线过点(2,-2)22a2 5 .0a 这条抛物线所表
2、示的二这条抛物线所表示的二次函数为次函数为:2x5.0y 当水面下降当水面下降1m时时,水面的水面的纵坐标为纵坐标为y=-3,这时有这时有:2x5 . 03 6x m62这这时时水水面面宽宽度度为为当水面下降当水面下降1m时时,水面宽水面宽度增加了度增加了m)462( 返回返回解二解二如图所示如图所示,以抛物线和水面的两个交点的连线为以抛物线和水面的两个交点的连线为x轴,以抛物线轴,以抛物线的对称轴为的对称轴为y轴,建立平面直角坐标系轴,建立平面直角坐标系.当拱桥离水面当拱桥离水面2m时时,水面宽水面宽4m即即:抛物线过点抛物线过点(2,0)22a02 5 .0a 这条抛物线所表示的二这条抛物
3、线所表示的二次函数为次函数为:2x5.0y2 当水面下降当水面下降1m时时,水面的水面的纵坐标为纵坐标为y=-1,这时有这时有:2x5 . 012 6x m62这这时时水水面面宽宽度度为为当水面下降当水面下降1m时时,水面宽水面宽度增加了度增加了m)462( 可设这条抛物线所表示可设这条抛物线所表示的二次函数的解析式为的二次函数的解析式为:2axy2 此时此时,抛物线的顶点为抛物线的顶点为(0,2)返回返回解三解三 如图所示如图所示,以抛物线和水面的两个交点的连线为以抛物线和水面的两个交点的连线为x轴,以其中轴,以其中的一个交点的一个交点(如左边的点如左边的点)为原点,建立平面直角坐标系为原点
4、,建立平面直角坐标系.可设这条抛物线所表示可设这条抛物线所表示的二次函数的解析式为的二次函数的解析式为:2)2x(ay2 抛物线过点抛物线过点(0,0)2)2(a02 5 .0a 这条抛物线所表示的二这条抛物线所表示的二次函数为次函数为:2)2x(5 . 0y2 当水面下降当水面下降1m时时,水面的水面的纵坐标为纵坐标为y=-1,这时有这时有:2)2x(5 . 012 62x,62x21 m62xx12 当水面下降当水面下降1m时时,水面宽水面宽度增加了度增加了m)462( 此时此时,抛物线的顶点为抛物线的顶点为(2,2)这时水面的宽度为这时水面的宽度为:返回返回练习练习2 2某涵洞是抛物线形
5、,它的截面如图某涵洞是抛物线形,它的截面如图26.2.926.2.9所示,现测得水面宽所示,现测得水面宽1 16m6m,涵洞顶,涵洞顶点点O O到水面的距离为到水面的距离为2 24m4m,问距水面,问距水面1.51.5米米处水面宽是否超过处水面宽是否超过1 1米米? ?AB 例例:某工厂大门是一抛物线形的水泥建筑物某工厂大门是一抛物线形的水泥建筑物,大门底部宽大门底部宽AB=4m,顶部顶部C离地面的高度为离地面的高度为4.4m,现有载满货物的汽车现有载满货物的汽车欲通过大门欲通过大门,货物顶部距地面货物顶部距地面2.7m,装货宽度为装货宽度为2.4m.这辆汽这辆汽车能否顺利通过大门车能否顺利通
6、过大门?若能若能,请你通过计算加以说明请你通过计算加以说明;若不能若不能,请简要说明理由请简要说明理由.解:如图,以解:如图,以AB所在的直线为所在的直线为x轴,轴,以以AB的垂直平分线为的垂直平分线为y轴,建立平面轴,建立平面直角坐标系直角坐标系.AB=4A(-2,0) B(2,0)OC=4.4 C(0,4.4)设抛物线所表示的二次函数为设抛物线所表示的二次函数为4 . 4axy2 抛物线过抛物线过A(-2,0)04 . 4a4 1 . 1a 抛物线所表示的二次函数为抛物线所表示的二次函数为4 . 4x1 . 1y2 7 . 2816. 24 . 42 . 11 . 1y2 . 1x2 时,
7、时,当当汽车能顺利经过大门汽车能顺利经过大门.做一做做一做如图所示,有一座抛物线型拱桥,在正常水位如图所示,有一座抛物线型拱桥,在正常水位ABAB时,水时,水面宽面宽2020米,水位上升米,水位上升3 3米,就达到警戒线米,就达到警戒线CD,CD,这时水面宽这时水面宽为为1010米。米。(1 1)求抛物线型拱桥的解析式。)求抛物线型拱桥的解析式。(2 2)若洪水到来时,水位以每小时)若洪水到来时,水位以每小时0.20.2米的速度上升,米的速度上升,从警戒线开始,从警戒线开始,在持续多少小时才能达在持续多少小时才能达到拱桥顶?到拱桥顶?(3 3)若正常水位时,有一艘)若正常水位时,有一艘宽宽8
8、8米,高米,高2.52.5米的小船米的小船能否安全通过这座桥?能否安全通过这座桥?A AB B20m20mCD练一练: 如图是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下。建立如图所示的坐标系,如果喷头所在处A(0,1. .25),水流路线最高处B(1,2. .25),求该抛物线的解析式。如果不考虑其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外。 y= (x-1)2 +2.25(0,1.25)A 一场篮球赛中,小明跳起投篮,已知球出手时离一场篮球赛中,小明跳起投篮,已知球出手时离地面高地面高 米,与篮圈中心的水平距离为米,与篮圈中心的水平距离为8 8米,当球米,当
展开阅读全文