书签 分享 收藏 举报 版权申诉 / 20
上传文档赚钱

类型人工神经网络-2第二章-NN理论基础课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2571639
  • 上传时间:2022-05-05
  • 格式:PPT
  • 页数:20
  • 大小:411.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人工神经网络-2第二章-NN理论基础课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人工 神经网络 _2 第二 NN 理论基础 课件
    资源描述:

    1、第二章 NN理论基础2.1 生物神经系统的模型化2.2 M-P神经元模型与人工神经网络的构成2.3人工神经网络的学习机理与 Hebb学习规则2.4教师示教学习与无教师示教学习2.5模式识别的基本定义与方法2.6生物NN与人工NN的比较2.7线性分类器 2.1 生物神经系统的模型化生物神经系统的模型化n神经元特点 1)神经元是一个多输入、单输出元件。2)神经元是一个具有非线性输入/输出特性的元件。3)神经元具有可逆性,传递强度可变。4)神经元的输出是各个输入综合的结果。 2.1 生物神经系统的模型化生物神经系统的模型化 (1)(1)+(2)(1)+(2)+(3)(1)+(2)+(3)+(4) 2

    2、.1 生物神经系统的模型化生物神经系统的模型化n生物神经元模型数学表达式n把阈值看成神经元的第0个输入,x0为常数-1, 神经元的响应函数根据要求和特点的不同,分为以下几种:a)阶跃函数 1()niiiYf XXw x0niiiXw x0 00 1)(xxxfy2.1 生物神经系统的模型化生物神经系统的模型化nb)S型函数 c)比例函数xexfy11)( )yf xkx2.1 生物神经系统的模型化生物神经系统的模型化nd)符号函数 e)饱和函数 0 10 1)(xxxfy1111( )11xkyf xkxxkkxk 2.1 生物神经系统的模型化生物神经系统的模型化nf)双曲函数uxuxeexf

    3、y11)(2.2 M-P神经元模型与人工神经网络的构成神经元模型与人工神经网络的构成一M-P模型: 1943年,McCulloch(生理学家)和Pitts(数学家)定义了神经元模型M-P模型。 f:阶跃函数 输入向量: 权值向量:阈值: 输出: 其中: 响应函数也可采用符号函数: )(21nxxxX,)(21nwwwW,niiixwfy1)(0001)(xxxf0011)(Sgnxxx2.2 M-P神经元模型与人工神经网络的构成神经元模型与人工神经网络的构成二、神经网络的连接形成:1)单层网络: 左边只起分配信号的作用 输入向量: 输出向量: 神经元的输入向量: 加权阵: ),(21nxxxX

    4、),(21myyyY),(21msssSnmnnmmwwwwwwwwwW212222111211nmnnmmnwwwwwwwwwxxxXWS21222211121121),(misfyii,.,1)( 2.2 M-P神经元模型与人工神经网络的构成神经元模型与人工神经网络的构成n2)多层网络: 中间层神经元的输出: ),(21kzzzZ11iisxw11( )iizf ski, 2 , 122jjszw2()jjyfzmj, 2 , 12.2 M-P神经元模型与人工神经网络的构成神经元模型与人工神经网络的构成n3)反馈型网络: 4)全互连接型 一层的输出通过连接权 回送到同一层或前一层。 2.3

    5、人工神经网络的学习机理与人工神经网络的学习机理与Hebb学习规则学习规则 NN仅有拓扑结构还不能具有任何智能特性,必须有一套完整的学习、工作规则与之配合。 人工神经网络的学习规则,说到底就是网络连接权的调整规则。 40年代,Hebb根据心理学中条件反射机理提出了神经细胞间连接强度变化的规则,即所谓的Hebb学习规则。 内容为:如果两个神经元同时兴奋(同时为1),则它们 之间的突触联系得以增强。 以 表示 神经元i,j的激活值 表示 i,j之间的连接权jiaa ,ij2.3人工神经网络的学习机理与人工神经网络的学习机理与Hebb学习规则学习规则n则Hebb学习规则为:n学习过程:jiijijji

    6、ijaattaa)(1开始设定连接权初值评价连接权调整输入数据评价标准2.4教师示教学习与无教师示教学习教师示教学习与无教师示教学习n一、教师学习: 在网络的学习过程中,对于网络输出的正确性必须有一个评价标准,网络根据实际输出与评价标准的比较,决定连接权值的调整、合成。评价标准是人为由外界提示给网络的,即相当于一个知晓正确结果的教师示教给网络称为教师示教学习。 神经网络 比较 学习系统 输入 教师示教 (希望输出) 实际输出 2.4教师示教学习与无教师示教学习教师示教学习与无教师示教学习n二、无教师示教学习方式 无外部教师,网络能够根据其特有的网络结构和学习规则,对属于同一类的模式进行自动分类

    7、。神经网络自我比较学习系统输入实际输出 2.5模式识别的基本定义与方法n一、基本定义模式:面临的一类对象或事物。模式识别:对模式进行正确的分类。模式的特征:一个模式区别另一模式的主要差别。模式识别函数:用数学形式表达分类边界。 模式识别函数可以是曲线、平面、超曲线、超平面等。 对于复杂的模式需要几个特征来区分,构成n维特征向量。根据得到的数据处于分类边界线的左边或右边来判断模式类别。 2.5模式识别的基本定义与方法例:根据体重和高度来区别体操、篮球运动员二、方法 K-最邻近分类方法 判别上图中a1属于哪一类,可看a1最邻近哪一类 f(x)=d1-d2 d1:与第一类模式最短距离; d2:与第二

    8、类模式最短距离; f(x)0 则a1属于第二类 用一点来计算距离受到限制,往往利用平均距离来分类 2.5模式识别的基本定义与方法模式识别的基本定义与方法三、计算模式距离的方法 汉明距离 设有两个模式向量 欧化距离 矩形距离),(21nxxxX),(21nyyyY 2.7线性分类器线性分类器n设A1、A2两组模式,现需要进行分类。求分类边界 ai为输入模式A中的第i个元素 wi取向量w的第i个元素 n为向量的维数 当f(x)0 A属于A1 当f(x)0 A属于A2 能否找到一个合适的权向量w,使得分别属于A1,A2中所有的输入模式都可以用f(A)来分类。若能,则线性可分;否则为非线性可分。0( )niiif Awa

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人工神经网络-2第二章-NN理论基础课件.ppt
    链接地址:https://www.163wenku.com/p-2571639.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库