常微分方程11习题课课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《常微分方程11习题课课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 11 习题 课件
- 资源描述:
-
1、高阶微分方程高阶微分方程 习题课习题课一、主要内容一、主要内容高阶方程高阶方程可降阶方程可降阶方程线性方程解的结构线性方程解的结构二阶常系数线性二阶常系数线性方程解的结构方程解的结构特征根法特征根法特征方程的根特征方程的根及其对应项及其对应项待定系数法待定系数法f(x)f(x)的形式及其的形式及其特解形式特解形式微分方程解题思路微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非全微分方程非变量可分离非变量可分离幂级数解法幂级数解法降降阶阶作作变变换换作变换作变换积分因子积分因子1 1
2、、可降阶的高阶微分方程的解法、可降阶的高阶微分方程的解法)()1()(xfyn 型型解法解法接连积分接连积分n次,得通解次,得通解),()2(yxfy 型型特点特点. y不显含未知函数不显含未知函数解法解法),(xPy 令令,Py 代入原方程代入原方程, 得得).(,(xPxfP ),()3(yyfy 型型特点特点.x不不显显含含自自变变量量解法解法),(xPy 令令,dydpPy 代入原方程代入原方程, 得得).,(PyfdydpP 2 2、线性微分方程解的结构、线性微分方程解的结构(1 1)二阶齐次方程解的结构)二阶齐次方程解的结构: :)1(0)()( yxQyxPy形如形如也也是是解解
3、则则是是解解若若221121,ycycyyy 是是通通解解则则是是两两无无关关解解若若221121,ycycyyy (2 2)二阶非齐次线性方程的解的结构)二阶非齐次线性方程的解的结构: :)2()()()(xfyxQyxPy 形如形如非齐方程的任两解之差是相应齐方程的解非齐方程的任两解之差是相应齐方程的解非齐通解非齐通解 = 齐通解齐通解 + 非齐特解非齐特解2121)()()(yyyxfxfxf 则若的的特特解解分分别别是是则则的的特特解解是是若若)(),(,)()()(21212121xfxfyyxjfxfxfy jyy 3 3、二阶常系数齐次线性方程解法、二阶常系数齐次线性方程解法)(
4、1)1(1)(xfyPyPyPynnnn 形如形如n阶常系数线性微分方程阶常系数线性微分方程0 qyypy二阶常系数齐次线性方程二阶常系数齐次线性方程)(xfqyypy 二阶常系数非齐次线性方程二阶常系数非齐次线性方程解法解法由常系数齐次线性方程的特征方程的根确由常系数齐次线性方程的特征方程的根确定其通解的方法称为定其通解的方法称为特征方程法特征方程法.0 qyypy特征方程为特征方程为02 qprr 特征根的情况特征根的情况 通解的表达式通解的表达式实根实根21rr 实根实根21rr 复根复根 ir 2, 1xrxreCeCy2121 xrexCCy2)(21 )sincos(21xCxCe
5、yx 推广:推广: 阶常系数齐次线性方程解法阶常系数齐次线性方程解法n01)1(1)( yPyPyPynnnn特征方程为特征方程为0111 nnnnPrPrPr特征方程的根特征方程的根通解中的对应项通解中的对应项rk重重根根若若是是rxkkexCxCC)(1110 jk复复根根重重共共轭轭若若是是xkkkkexxDxDDxxCxCC sin)(cos)(111011104 4、二阶常系数非齐次线性微分方程解法、二阶常系数非齐次线性微分方程解法)(xfqyypy 二阶常系数非齐次线性方程二阶常系数非齐次线性方程解法解法待定系数法待定系数法.型型)()()1(xPexfmx , )(xQexymx
6、k 设设 是重根是重根是单根是单根不是根不是根 2,10k型型sin)(cos)()()2(xxPxxPexfnlx ,sin)(cos)()2()1(xxRxxRexymmxk 设设次多项式,次多项式,是是其中其中mxRxRmm)(),()2()1( nlm,max .1;0是特征方程的单根时是特征方程的单根时不是特征方程的根时不是特征方程的根时 jjk二、典型例题二、典型例题例例1 1.212yyy 求通解求通解解解.x方程不显含方程不显含,dydPPyPy 令令代入方程,得代入方程,得,212yPdydPP ,112yCP 解得,解得,, 11 yCP, 11 yCdxdy即即故方程的通
7、解为故方程的通解为.12211CxyCC 例例2 2. 1)1()1(,2 yyexeyyyxx求特解求特解解解特征方程特征方程, 0122 rr特征根特征根, 121 rr对应的齐次方程的通解为对应的齐次方程的通解为.)(21xexCCY 设原方程的特解为设原方程的特解为,)(2*xebaxxy ,2)3()(23*xebxxbaaxy 则则,2)46()6()(23*xebxbaxbaaxy 代入原方程比较系数得代入原方程比较系数得将将)( ,)( ,* yyy,21,61 ba原方程的一个特解为原方程的一个特解为,2623*xxexexy 故原方程的通解为故原方程的通解为.26)(232
8、1xxxexexexCCy , 1)1( y, 1)31(21 eCC,6)1()(3221xexxCCCy , 1)1( y, 1)652(21 eCC,31121 eCC,651221 eCC由由解得解得 ,121,61221eCeC所以原方程满足初始条件的特解为所以原方程满足初始条件的特解为.26)121(61223xxxexexexeey 例例3 设二阶非齐次线性方程的三个特解为设二阶非齐次线性方程的三个特解为xxyxxyxycos,sin,321 求其通解求其通解解解 由解的结构知非齐方程的任二解之差是由解的结构知非齐方程的任二解之差是相应齐方程的解相应齐方程的解故故xyysin12
9、 xyycos13 是齐方程的两个解是齐方程的两个解齐通解齐通解xcxcYsincos21 且线性无关且线性无关非齐通解非齐通解xxcxcy sincos21例例4 设设 f (x) 具有连续的二阶导数试确定具有连续的二阶导数试确定f (x) 使曲线积分使曲线积分dyxfydxxfxfxeLx)()()(2 )(常数常数 与路径无关与路径无关解解 由曲线积分与路径无关的条件得由曲线积分与路径无关的条件得)()(2)(xfxfexfx 即即xexfxfxf )()(2)(这是一个二阶常系数非齐次线性微分方程这是一个二阶常系数非齐次线性微分方程齐通解齐通解xexccy )(21时时1 xexy 2
展开阅读全文