2020版高考数学大一轮复习第十一章统计与统计案例11.3变量间的相关关系、统计案例课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020版高考数学大一轮复习第十一章统计与统计案例11.3变量间的相关关系、统计案例课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 一轮 复习 第十一 统计 案例 11.3 变量 相关 关系 课件 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、11.3变量间的相关关系、统计案例第十一章统计与统计案例ZUIXINKAOGANG最新考纲1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.3.通过对典型案例的探究,了解独立性检验的基本思想、方法及其初步应用.4.通过对典型案例的探究,进一步了解回归分析的基本思想、方法及简单应用.NEIRONGSUOYIN内容索引基础知识 自主学习题型分类 深度剖析课时作业1基础知识 自主学习PART ONE(1)正相关在散点图中,点散布在从_到_
2、的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关在散点图中,点散布在从_到_的区域,两个变量的这种相关关系称为负相关.(3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在_,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.1.两个变量的线性相关知识梳理ZHISHISHULIZHISHISHULI左下角右上角左上角右下角一条直线附近2.回归方程(1)最小二乘法求回归直线,使得样本数据的点到它的_的方法叫做最小二乘法.(2)回归方程距离的平方和最小3.回归分析(1)定义:对具有_的两个变量进行统计分析的一种常用方法.(2)样本点的中心对于一组具有线性相关关
3、系的数据(x1,y1),(x2,y2),(xn,yn),其中( )称为样本点的中心.(3)相关系数当r0时,表明两个变量_;当r0时,正相关;当r0时,正相关;当 0时,负相关.思维升华跟踪训练1(1)在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i1,2,n)都在直线y x1上,则这组样本数据的样本相关系数为A.1 B.0 C. D.1解析完全的线性关系,且为负相关,故其相关系数为1,故选A.(2)x和y的散点图如图所示,则下列说法中所有正确命题的序号为_.x,y是负相关关系;在该相关关系中,若用y拟合时
4、的相关指数为,用 拟合时的相关指数为,则;x,y之间不能建立线性回归方程.21ec xc解析在散点图中,点散布在从左上角到右下角的区域,因此x,y是负相关关系,故正确;x,y之间可以建立线性回归方程,但拟合效果不好,故错误.21ec xc题型二回归分析命题点1线性回归分析多维探究多维探究例2下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码17分别对应年份20112017.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.解
5、由折线图中数据和附注中参考数据得(2)建立y关于t的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量.附注:所以预测2019年我国生活垃圾无害化处理量约为1.83亿吨.命题点2非线性回归例3某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.46.65636.8289.81.61 469108.8(1)根据散点图判断,yabx与ycd哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判
6、断即可,不必说明理由)解由散点图可以判断,ycd适宜作为年销售量y关于年宣传费x的回归方程类型.(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z0.2yx.根据(2)的结果回答下列问题:年宣传费x49时,年销售量及年利润的预报值是多少?年宣传费x为何值时,年利润的预报值最大?解由(2)知,当x49时,根据(2)的结果知,年利润z的预报值故年宣传费为46.24千元时,年利润的预报值最大.回归分析问题的类型及解题方法(1)求回归方程根据散点图判断两变量是否线性相关,如不是,应通过换元构造线性相关.利用公式,求出回归系数 .待定系数法:利用
7、回归直线过样本点的中心求系数 .(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.(3)利用回归直线判断正、负相关;决定正相关还是负相关的是系数 .(4)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.思维升华跟踪训练2(2018全国)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,17)建立模型: 30.413.5t;根据2010年至2016年的数据(时间变量t
8、的值依次为1,2,7)建立模型:9917.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;解利用模型,可得该地区2018年的环境基础设施投资额的预测值为 30.413.519226.1(亿元).利用模型,可得该地区2018年的环境基础设施投资额的预测值为 9917.59256.5(亿元).(2)你认为用哪个模型得到的预测值更可靠?并说明理由.解利用模型得到的预测值更可靠.理由如下:()从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y30.413.5t上下,这说明利用2000年至2016年的数据建立的线性模型不能很好地描述环境基础设施投资
9、额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型 9917.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型得到的预测值更可靠.()从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型得到的预测值226.1亿元的增幅明显偏低,而利用模型得到的预测值的增幅比较合理,说明利用模型得到的预测值更可靠.题型三独立性检验师生共研师生共研例4(2017全国)海水养殖场进行某水
10、产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;解旧养殖法的箱产量低于50 kg的频率为(0.0120.0140.0240.0340.040)50.62.因此,事件A的概率估计值为0.62.(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50 kg箱产量50 kg旧养殖法 新养殖法 解根据箱产量的频率分布直方图得列联表如下:箱产量6.635,故有99%的把握认为箱产量与养殖方法有关.(3)根据箱产量的频率分布直
11、方图,对两种养殖方法的优劣进行比较.附:P(K2k0)0.0500.0100.001k03.8416.63510.828解箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.(1)比较几个分类变量有关联的可能性大小的方法通过计算K2的大小判断:K2越大,两变量有关联的可能性越大.通过计算|adbc|的大小判断:|adbc|越大,两变量有关联的可能性越大.(2)独
12、立性检验的一般步骤根据样本数据制成22列联表.比较k与临界值的大小关系,做统计推断.思维升华跟踪训练3微信是现代生活进行信息交流的重要工具,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信的时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中有 是青年人.(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出22列联表:青年人中年人总计经常使用微信 不经常使用微信 总计 解由已知可得
13、,该公司员工中使用微信的有20090%180(人).经常使用微信的有18060120(人),使用微信的人中青年人有18075%135(人),故22列联表如下:青年人中年人总计经常使用微信8040120不经常使用微信55560总计13545180(2)根据22列表中的数据利用独立性检验的方法判断是否有99.9%的把握认为“经常使用微信与年龄有关”?P(K2k0)0.0100.001k06.63510.828由于13.33310.828,所以有99.9%的把握认为“经常使用微信与年龄有关”.数据分析是指针对研究对象获得相关数据,运用统计方法对数据中的有用信息进行分析和推断,形成知识的过程.主要包括
14、:收集数据、整理数据、提取信息、构建模型对信息进行分析、推断、获得结论.核心素养之数据分析HEXINSUYANGZHISHUJUFENXIHEXINSUYANGZHISHUJUFENXI线性回归方程及其应用例某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份20062008201020122014需求量/万吨236246257276286解由所给数据看出,年需求量与年份之间近似直线上升,下面来求线性回归方程,先将数据处理如下表.年份201042024需求257211101929(2)利用(1)中所求出的线性回归方程预测该地2019年的粮食需求量.解利用所求得的线性回归方程,可预测2019
展开阅读全文