(新课程)高中数学-4-1-2-数学归纳法应用举例(习题课)课件-新人教A版选修4-5.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(新课程)高中数学-4-1-2-数学归纳法应用举例(习题课)课件-新人教A版选修4-5.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课程 高中数学 数学 归纳法 应用 举例 习题 课件 新人 选修 下载 _人教A版_数学_高中
- 资源描述:
-
1、第2课时数学归纳法应用举例(习题课)【课标要求】1进一步理解数学归纳法原理2会用数学归纳法证明整除问题以及平面几何中的有关问题【核心扫描】1利用数学归纳法证明整除问题,注意“添项”与“减项”等变形技巧(难点)2证明几何问题时,要正确分析由nk到nk1时几何图形的变化规律(难点) 题型一用数学归纳法证明整除性问题【例1】 已知数列an满足a10,a21,当nN*时,an2an1an,求证:数列an的第4m1项(mN*)能被3整除思维启迪 数学归纳法证明整除问题的方法与其证明等式和不等式的方法一样当由nk到nk1的证明时要注意分解成几个含除式的多项式的和差变化证明(1)当m1时,a4m1a5a4a
2、3(a3a2)(a2a1)(a2a1)2a2a13a22a1303.即当m1时,第4m1项能被3整除(2)假设当mk时,a4k1能被3整除,则当mk1时,a4(k1)1a4k5a4k4a4k32a4k3a4k22(a4k2a4k1)a4k23a4k22a4k1.显然,3a4k2能被3整除,又由假设知a4k1能被3整除3a4k22a4k1能被3整除即当mk1时,a4(k1)1也能被3整除由(1)和(2)知,对于nN*,数列an中的第4m1项能被3整除规律方法 本题若从递推式入手,设法求出通项公式,会相当困难这时,可转向用数学归纳法证明【变式1】 用数学归纳法证明:(x1)n1(x2)2n1 (n
3、N*)能被x23x3整除证明(1)当n1时,(x1)11(x2)21x23x3,显然命题成立(2)假设nk (k1)时,命题成立,即(x1)k1(x2)2k1能被x23x3整除,则当nk1时,(x1)k2(x2)2k1(x1)k2(x1)(x2)2k1(x2)2k1(x1)(x2)2k1(x1)(x1)k1(x2)2k1(x2)2k1(x23x3)由假设可知上式可被x23x3整除,即nk1时命题成立由(1)(2)可知原命题成立 题型二探索问题思维启迪 由几个简单的特殊形式找出a的最大值,然后用数学归纳法进行证明即可规律方法 利用数学归纳法解决探索型不等式的思路是:先通过观察、判断,猜想出结论,
展开阅读全文