华师大版八年级数学上册第14章勾股定理PPT教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《华师大版八年级数学上册第14章勾股定理PPT教学课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 师大 八年 级数 上册 14 勾股定理 PPT 教学 课件 下载 _八年级上册_华师大版(2024)_数学_初中
- 资源描述:
-
1、14.1 勾股定理第14章 勾股定理导入新课讲授新课当堂练习课堂小结八年级数学上(HS) 教学课件1.直角三角形三边的关系情境引入1.掌握勾股定理及其简单应用,理解定理的一般探究方法(重点)2.通过利用方格纸计算面积的方法探索勾股定理,经历观察、归纳、猜想和验证的数学发现过程,发展数形结合的数学思想(难点)学习目标 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火? 导入新课导入新课问题情境问题情境(图中每一格代表一平方厘米)(1)正方形P的面积是 平方厘米;(2)正方形Q的面积是 平方厘米;
2、(3)正方形R的面积是 平方厘米.121SP+SQ=SRRQPACBAC2+BC2=AB2等腰直角三角形ABC三边长度之间存在什么关系吗?Sp=AC2 SQ=BC2 SR=AB2直角三角形三边的关系讲授新课讲授新课上面三个正方形的面积之间有什么关系?观察正方形瓷砖铺成的地面. 这说明在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方 那么,在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?想一想想一想P的面积(单位长度)Q的面积(单位长度)R的面积(单位长度)图2图3P、Q、R面积关系直角三角形三边关系QPRQPRABCABC916259413SP+SQ=SRBC2+AC2=A
3、B2(每一小方格表示1平方厘米)试一试试一试BC2+AC2=AB2QPRQPR把R看作是四个直角三角形的面积+小正方形面积.QPRQPR把R看作是大正方形面积减去四个直角三角形的面积.432147225S正方形R 分别以5cm、12cm为直角三角形的直角边作出一个直角三角形ABC,测量斜边的长度,然后验证上述关系对这个直角三角形是否成立.做一做做一做 由前面的探索可以发现:对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有 a2+b2=c2勾股定理勾股定理: :直角三角形两直角边的平方和等于斜边的平方.几何语言:在RtABC中 ,C=90,a2+b2=c2(勾股定理).
4、aABCbc归归 纳纳勾股定理揭示了直角三角形三边之间的关系.温馨提示:温馨提示:上述这种验证勾股定理的方法是用上述这种验证勾股定理的方法是用面积法面积法 “赵爽弦图赵爽弦图”表现了我国古人对数学的钻研精神和聪明表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲才智,它是我国古代数学的骄傲.因为,这个图案被选为因为,这个图案被选为2002年在北京召开的国际数学大会的会徽年在北京召开的国际数学大会的会徽.abcS大正方形c2S小正方形(b-a)S大正方形4S三角形S小正方形赵爽弦图赵爽弦图证明:证明:b-aaaaabbbbcccc方法小结:我们利用拼图的方法,将形的问题与数的问题结
5、合起来,再进行整式运算,从理论上验证了勾股定理大正方形的面积可以表示为 ;也可以表示为 .(a+b)2c2 +4ab/2 (a+b)2 = c2 + 4ab/2a2+2ab+b2 = c2 +2ab a2+b2=c2 用四个全等的直角三角形,还可以拼成如图所示的图形,你能否根据这一图形,证明勾股定理. 做一做做一做求下列图形中未知正方形的面积或未知边的长度(口答): ?225100 x1517已知直角三角形两边,求第三边.练一练当堂练习当堂练习1.图中阴影部分是一个正方形,则此正方形的面积 为 .15 cm17 cm64 cm2.判断题 ABC的两边AB=5,AC=12,则BC=13 ( )
6、ABC的a=6,b=8,则c=10 ( ) 3.填空题 在ABC中, C=90,AC=6,CB=8,则ABC面积为_,斜边为上的高为_.244.8ABCD4.一高为2.5米的木梯,架在高为2.4米的墙上(如图),这时梯脚与墙的距离是多少? ABC解:在RtABC中,根据勾股定理,得:BC2=AB2-AC2 =2.52-2.42 =0.49,所以BC=0.7.5.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶上方4 km处,过了15 s,飞机距离这个男孩头顶5 km.这一过程中飞机飞过的距离是多少千米?4554CBA解:在RtABC中,答:飞机飞过的距离是3km.222BC =5 -4 =9B
7、C0BC=3(km),6.如图,一根旗杆在离地面9 m处折断,旗杆顶部落在离旗杆底部12 m处.旗杆原来有多高?12 m12 m9 m9 m解:设旗杆顶部到折断处的距离为x m,根据勾股定理,得x=15, 15+9=24(m).答:旗杆原来高24 m.222912x认识勾股定理如果直角三角形两直角边长分别为a,b,斜边长为 c ,那么a2+b2=c2 课堂小结课堂小结利用勾股定理进行计算14.1 勾股定理第14章 勾股定理导入新课讲授新课当堂练习课堂小结八年级数学上(HS) 教学课件2.直角三角形的判定情境引入学习目标1.了解直角三角形的判定条件(重点)2.能够运用勾股数解决简单实际问题(难点
8、)* * *(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)*(1)*(2)*(3)*(4)*(5)*(6)*(7)*(8)*(9)*(10)*(11)*(12)*(13)你想知道这是什么道理吗? 据说,古埃及人曾用下面的方法画直角: 他们用13个等距离的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.问题:同学们你们知道古埃及人用什么方法得到直角?导入新课导入新课讲授新课讲授新课直角三角形的判定一问题:试画出三边长度分别为如下数据的三角形,
9、看看它们是一些什么样的三角形: (1)a=3,b=4,c=5; (2)a=4,b=6,c=8; (3)a=6,b=8,c=10.试一试试一试 可以发现,按(1)、(3)所画的三角形都是直角三角形,最长边所对的角是直角;按(2)所画的三角形不是直角三角形.这三组数都满足 a2+b2=c2吗? 在这三组数据中,(1)、(3)两组数据恰好都满足a2+b2=c2.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个 三角形是直角三角形,且边c所对的角为直角. 对于任意一个三角形,若三边长满足 a2+b2=c2,则该三角形是直角三角形吗?BC 例1 已知:如图,在ABC中,AB
10、=c, BC=a, AC=b,a+b=c,求证:C=90.ABCA证明:如图,作ABC,使C=90 AC=b,BC=a, 则AB=a+b=c, 即AB=c. 在ABC和ABC中, BC=a=BC, AC=b=AC, AB=c=AB, ABCABC. C=C=90.典例精析 分析:根据勾股定理的逆定理, 判断一个三角形是不是直角三角形, 只要看两条较短边长的平方和是否等于最长边长的平方. 例2 判断由线段a,b,c组成的三角形是不是直角三角形? (1) a=7,b=25,c=24; (2) a=13,b=11,c=9. 解:(1)最长边为25, a2+c2=72+242 =49+576 =625
11、,b2=252 =625, a2+c2=b2. 以7, 25, 24为边长的三角形是直角三角形. (2)最长边为13, b2+c2=112+92 =121+81 =202,a2=132 =169, b2+c2a2. 以13, 11, 9为边长的三角形不是直角三角形.例 3 一个零件的形状如图1所示,按规定这个零件中A和DBC都应为直角,工人师傅量得这个零件各边的尺寸如图2所示,你说这个零件符合要求吗?DABC4351312DABC图1图2在BCD中, 所以BCD 是直角三角形,DBC是直角.因此,这个零件符合要求.解:在ABD中, 所以ABD 是直角三角形,A是直角. 例4 已知ABC,AB=
12、n-1,BC=2n,AC=n+1(n为大于1的正整数).试问ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由解:AB+BC=(n-1)+(2n) =n4 -2n+1+4n =n4 +2n+1 =(n+1) =AC,ABC直角三角形,边AC所对的角是直角.先确定AB、BC、AC、的大小 能够成为直角三角形三边长的三个正整数,称为勾股数.例如3 ,4 ,5 ;6, 8, 10; n-1,2n,n+1(n为大于1的正整数)等都是勾股数.勾股数二例5 下列各组数是勾股数的是( ) A.6,8,10 B.7,8,9 C.0.3,0.4,0.5 D.52,122,132A方法点拨:根据勾股数
展开阅读全文