北师大版八年级数学下册全册公开课精品课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版八年级数学下册全册公开课精品课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 下册 公开 精品 课件 下载 _八年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、1.1 等腰三角形第一章三角形的证明 第1课时 三角形的全等和等腰三角形的性质 学习目标1.回顾全等三角形的判定和性质;2.理解并掌握等腰三角形的性质及其推论,能运用 其解决基本的几何问题.(重点)导入新课导入新课情境引入问题1:图中有些你熟悉的图形吗?它们有什么共同特点?斜拉桥梁埃及金字塔体育观看台架问题2:建筑工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道其中反映了什么数学原理?七下“轴对称”中学过的等腰三角形的“三线合一”. 思考:你能证明等腰三角形的“三线合一”吗?问题3 在八上的“平行线的证明”这一章中,我们
2、学了哪8条基本事实?1.两点确定一条直线;2.两点之间线段最短;3.同一平面内,过一点有且只有一条直线与已知直线 垂直;4.同位角相等,两直线平行;5.过直线外一点有且只有一条直线与这条直线平行;6.两边及其夹角分别相等的两个三角形全等;7.两角及其夹边分别相等的两个三角形全等;8.三边分别相等的两个三角形全等.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题:你能运用基本事实及已经学过的定理证明上面的推论吗?弄清楚证明一个命题的一般步骤是解题的关键证明一个命题的一般步骤:(1)弄清题设和结论; (2)根据题意画出相应的图形;(3)根据题设和结论写出已知和求证; (4)
3、分析证明思路,写出证明过程.讲授新课讲授新课全等三角形的判定和性质一已知:如图,A=D,B=E,BC=EF.求证:ABCDEF.证明:A+B+C=180,D+E+F=180(三角形内角和等于180),C=180(A+B),F=180(D+E).A=D,B=E(已知), C=F(等量代换).BC=EF(已知),ABCDEF(ASA).FEDCBA总结归纳定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS). 根据全等三角形的定义,我们可以得到: 全等三角形的对应边相等,对应角相等.问题1:你还记得我们探索过的等腰三角形的性质吗?推论:等腰三角形顶角的平分线,底边上的中线 底边上的高
4、互相重合(三线合一).问题2:你能利用已有的公理和定理证明这些结论吗?定理:等腰三角形的两个底角相等.等腰三角形的性质及其推论二问题引入等腰三角形的两个底角相等.ABC已知:ABC中,AB=AC,求证:B=C.思考:如何构造两个全等的三角形?定理:等腰三角形的两个底角相等(等边对等角).如何证明两个角相等呢?可以运用全等三角形的性质“对应角相等”来证议一议:在七下学习轴对称时,我们利用折叠的方法说明了等腰三角形是轴对称图形,且两个底角相等,如下图,实际上,折痕将等腰三角形分成了两个全等的三角形.由此,你得到了什么解题的启发?已知: 如图,在ABC中,AB=AC.求证: B= C.ABCD证明:
5、 作底边的中线AD, 则BD=CD.AB=AC ( 已知 ),BD=CD ( 已作 ),AD=AD (公共边), BAD CAD (SSS). B= C (全等三角形的对应角相等).在BAD和CAD中方法一:作底边上的中线还有其他的证法吗?已知: 如图,在ABC中,AB=AC.求证: B= C.ABCD证明: 作顶角的平分线AD,则BAD=CAD.AB=AC ( 已知 ),BAD=CAD ( 已作 ),AD=AD (公共边), BAD CAD (SAS). B= C (全等三角形的对应角相等).方法二:作顶角的平分线在BAD和CAD中想一想:由BAD CAD,除了可以得到B= C之外,你还可以
6、得到那些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现? 解:BAD CAD,由全等三角形的性质易得BD=CD,ADB=ADC,BAD=CAD.又 ADB+ADC=180, ADB=ADC= 90 ,即AD是等腰ABC底边BC上的中线、顶角BAC的角平分线、底边BC上的高线 . ABCD定理:等腰三角形的两个底角相等(等边对等角).ACB如图,在ABC中, AB=AC(已知),B=C(等边对等角).证明后的结论,以后可以直接运用. 总结归纳推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合(三线合一).ACBD1 2AB=AC, 1=2(已知),BD=CD,ADB
7、C(等腰三角形三线合一).AB=AC, BD=CD (已知),1=2,ADBC(等腰三角形三线合一).AB=AC, ADBC(已知),BD=CD, 1=2(等腰三角形三线合一).综上可得:如图,在ABC中, ABCD 例1 如图,在ABC中 ,AB=AC,点D在AC上,且BD=BC=AD,求ABC各角的度数.典例精析分析:(1)找出图中所有相等的角;(2)指出图中有几个等腰三角形?A=ABD,C=BDC=ABC;ABC,ABD,BCD.ABCDx2x2x2x(3)观察BDC与A、ABD的关系,ABC、C呢?BDC= A+ ABD=2 A=2 ABD,ABC= BDC=2 A,C= BDC=2
8、A.(4)设A=x,请把 ABC的内角和用含x的式子表示出来. A+ ABC+ C=180 , x+2x+2x=180 ,ABCD解:AB=AC,BD=BC=AD,ABC=C=BDC, A=ABD.设A=x,则BDC= A+ ABD=2x,从而ABC= C= BDC=2x,于是在ABC中,有A+ABC+C=x+2x+2x=180 ,解得x=36 ,在ABC中, A=36,ABC=C=72.x2x2x2x 在含多个等腰三角形的图形中求角时,常常利用方程思想,通过内角、外角之间的关系进行转化求解.归纳例2 如图,点D、E在ABC的边BC上,ABAC.(1)若ADAE,求证:BDCE;(2)若BDC
9、E,F为DE的中点,如图,求证: AFBC.解析:(1)过A作AGBC于G,根据等腰三角形的性质得出BGCG,DGEG即可证明;(2)先证BFCF,再根据等腰三角形的性质证明图图ABD GECABDECF证明:(1)如图,过A作AGBC于G.ABAC,ADAE,BGCG,DGEG,BGDGCGEG,BDCE;(2)BDCE,F为DE的中点,BDDFCEEF,BFCF.ABAC,AFBC.图图ABD GECABDECF当堂练习当堂练习1.如图,已知ABAE,BADCAE,要使ABC AED,还需添加一个条件,这个条件可以是_CD(答案不唯一)2.(1)等腰三角形一个底角为为75, ,它的另外两个
10、角为_;(2)等腰三角形一个角为36, ,它的另外两个角为 _;(3)等腰三角形一个角为120, ,它的另外两个角为_. .75, 3072,72或或36,10830,30结论:在等腰三角形中,注意对角的分类讨论. 顶角+2底角=180 顶角=1802底角 底角=(180顶角)20顶角1800底角90课堂小结课堂小结等腰三角形的性质等边对等角三线合一注意是指同一个三角形中注意是指顶角的平分线,底边上的高和中线才有这一性质.而腰上高和中线与底角的平分线不具有这一性质.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS). 全等三角形的对应边相等,对应角相等.1.1 等腰三角形第一章
11、 三角形的证明 第2课时 等边三角形的性质 学习目标1.进一步学习等腰三角形的相关性质,了解等腰三角 形两底角的角平分线(两腰上的高,中线)的性质;2.学习等边三角形的性质,并能够运用其解决问 题.(重点、难点)在七下我们已经知道了“三边相等的三角形是等边三角形”,生活中有很多等边三角形,如交通图标、台球室的三角架等,它们都是等边三角形.思考:在上一节课我们证明等腰三角形的两底角相等,那等边三角形的各角之间有什么关系呢?导入新课导入新课情境引入讲授新课讲授新课等腰三角形的重要线段的性质一ACBDEACBMNACBPQ 上节课我们证明了等腰三角形的“三线合一”,试猜想等腰三角形的两底角的角平分线
12、、两腰上的高、两腰上的中线有什么关系呢?猜想:底角的两条平分线相等;两条腰上的中线相等;两条腰上的高线相等.你能证明你的猜想吗?例1 证明:等腰三角形两底角的平分线相等ACBE已知:求证: BD=CE.如图, 在ABC中, AB=AC, BD和CE是ABC的角平分线1 2猜想证明D2= ACB(已知),AB=AC(已知),ABC=ACB(等边对等角).证明:12又1= ABC,121=2(等式性质)在BDC与CEB中,DCB= EBC(已知),BC=CB(公共边),1=2(已证),BDCCEB(ASA) BD=CE(全等三角形的对应边相等)ACBE1 2D又CM= ,BN= ,12AB例2 证
13、明: 等腰三角形两腰上的中线相等BM=CN求证:已知:如图,在ABC中,AB=AC,BM,CN 是ABC两腰上的中线12AC证明: AB=AC(已知),ABC=ACB.CM=BN在BMC与CNB中, BC=CB,MCB=NBC, CM=BN,BMCCNB(SAS)BM=CN.ACBMN例3 证明: 等腰三角形两腰上的高相等BP=CQ求证:已知:如图,在ABC中,AB=AC,BP,CQ是ABC两腰上的高证明: AB=AC(已知),ABC=ACB.在BMC与CNB中, BC=CB,QBC=PCB, BQC=CPB,BQCCPB(SAS)BP=CQ.ACBPQ还有其他的结论吗?ACBDE1.已知:如
14、图,在ABC中,AB=AC.(1)如果ABD= ABC , ACE= ACB, 那么BD=CE吗? 为什么?(2)如果ABD= ABC ,ACE= ACB 呢? 由此你能得到一个什么结论?议一议:13131414 如果ABD= ABC , ACE= ACB , 那么BD=CE吗?1n1n过底边的端点且与底边夹角相等的两线段相等.BD=CEBD=CEBD=CE2.已知:如图,在ABC中,AB=AC.(1)如果AD= AC,AE= AB,那么BD=CE吗? 为什么?1313ACBDEBD=CE(2)如果AD= AC,AE= AB,那么BD=CE吗? 为什么?1414BD=CE由此你能得到一个什么结
15、论?(3)如果AD= AC,AE= AB,那么BD=CE吗? 为什么?1n1nBD=CE两腰上距顶点等距的两点与底边顶点的连线段相等.这里是一个由特殊结论归纳出一般结论的一种数学思想方法.等边三角形的性质二想一想:等边三角形是特殊的等腰三角形,那么等边三角形的内角有什么特征呢?定理: 等边三角形的三个内角都相等,并且每个角都等于60.可以利用等腰三角形的性质进行证明.怎样证明这一定理了?定理证明已知:如图,在ABC中, AB=AC=BC求证:A=B=C=60ACB证明:在ABC中,AB=AC(已知),B=C(等边对等角).同理A=B又A+B+C=180(三角形的内角和等于180),A=B=C=
16、60定理: 等边三角形的三个内角都相等,并且每个角都等于60.BCDAE例4:如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,求EDA的度数.解: ABC是等边三角形,CBA=60.BD是AC边上的中线,BDA=90, DBA=30. BD=BE, BDE=(180 DBA) 2 = (18030) 2=75. EDA=90 BDE=9075=15.当堂练习当堂练习ACBDE1.如图, ,ABC和ADE都是等边三角形,已ABC的周长为18cm,EC =2cm,则ADE的周长是 cm.122.如图所示,ACM和BCN都为等边三角形,连接AN、BM,求证:AN=BM.证明:ACM和BC
17、N都为等边三角形,1360,123 2,即ACNMCB.CACM,CBCN,CANCMB(SAS),ANBM.3.如图,A、O、D三点共线,OAB和OCD是两个全等的等边三角形,求AEB的大小. CBODAE解:OAB和OCD是两个全等的等边三角形.AO=BO,CO=DO, AOB=COD=60. A、O、D三点共线, DOB=COA=120, COA DOB(SAS). DBO=CAO.设OB与EA相交于点F, EFB=AFO, AEB=AOB=60.F变式:如图,若把“两个全等的等边三角形”换成“不全等的两个等边三角形”,其余条件不变,你还能求出AEB的大小吗?DCABEO方法与前面相同,
18、AEB=60.课堂小结课堂小结等腰三角形两底角上的平分线、两腰上的高、两腰上的中线的相关性质:底角的两条平分线相等;两条腰上的中线相等;两条腰上的高线相等.定理: 等边三角形的三个内角都相等,并且每个角都等于60.1.1 等腰三角形第一章 三角形的证明 第3课时 等腰三角形的判定与反证法 1.掌握等腰三角形的判定定理及其运用;(重点、难点)2.理解并掌握反证法的思想,能够运用反证法进行证明;(重点)学习目标复习引入导入新课导入新课问题1:等腰三角形有哪些性质定理及推论?等腰三角形的两底角相等(简写成 等边对等角”) 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合(简写成 三线合一”
19、)问题2:等腰三角形的“等边对等角”的题设和结论分别是什么? 题设:一个三角形是等腰三角形 结论:相等的两边所对应的角相等思考:如图,在ABC中,如果B=C,那么AB与AC之间有什么关系吗?我测量后发现AB与AC相等.3cm3cm讲授新课讲授新课等腰三角形的判定一ABC如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得B=C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?互动探究已知:如图,在ABC中, B=C,那么它们所对的边AB和AC有什么数量关系?建立数学模型:CAB做一做:画一个ABC,其中B=C=30,请你量一量AB与AC的长度,它
20、们之间有什么数量关系,你能得出什么结论?AB=AC你能验证你的结论吗?在ABD与ACD中,中,1=2, ABD ACD(AAS). B=C,AD=AD,AB=AC.过A作AD平分BAC交BC于点D.证明:CAB21D(ABC是等腰三角形.结论验证:有两个角相等的三角形是等腰三角形.(简称“等角对等边”). 等腰三角形的判定定理:在ABC中,B=C, 应用格式: AB=AC(等角对等边). ACB总结归纳ABCD211=2 , BD=DC(等角对等边).1=2, DC=BCABCD21(等角对等边). .错,因为都不是在同一个三角形中. 辨一辨:如图,下列推理正确吗? 例1 已知:如图,AB=D
21、C,BD=CA,BD与CA相交于点E.求证:AED是等腰三角形.ABCDE证明:AB=DC,BD=CA,AD=DA,ABDDCA(SSS),ADB=DAC(全等三角形的对应角相等),AE=DE(等角对等边), AED是等腰三角形.典例精析例2 已知:如图,在ABC中,AB=AC,点D,E分别是 AB,AC上的点,且DEBC.求证:ADE为等腰三角形.证明 AB=AC, B=C.又 DEBC, ADE=B,AED=C. ADE=AED. ADE为等腰三角形.想一想:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等你认为这个结论成立吗?如果成立,你能证明它吗?ABC反证法二
22、如图,在ABC中,已知BC,此时, AB与AC要么相等,要么不相等. 假设AB=AC, 那么根据“等角对等边”定理可得B=C, 但已知条件是 BC.“B=C”与“BC”相矛盾,因此ABAC.小明是这样想的:你能理解他的推理过程吗? 在证明时,先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立这种证明方法称为反证法 总结归纳用反证法证题的一般步骤用反证法证题的一般步骤1. 假设: 先假设命题的结论不成立;2. 归谬: 从这个假设出发,应用正确的推论方法,得出与 定义,公理、已证定理或已知条件相矛盾的结果;3. 结论: 由矛盾的结果判定假设不正确
23、,从而肯定命题 的结论正确.例3 用反证法证明:一个三角形中不能有两个角是直角.已知:ABC求证:A,B,C中不能有两个角是直角【分析】按反证法证明命题的步骤,首先要假定结论“A,B,C中不能有两个角是直角”不成立,即它的反面“A,B,C中有两个角是直角”成立,然后,从这个假定出发推下去,找出矛盾典例精析证明:假设A,B,C中有两个角是直角,不妨设A=B=90,则A+B+C=90+90+C180这与三角形内角和定理矛盾,A=B=90不成立所以一个三角形中不能有两个角是直角当堂练习当堂练习E21ABCD7236如果AD=4cm,则1.已知:如图,A=36,DBC=36,C=72,1= , 2=
24、;图中有 个等腰三角形;BC= cm;723634 个等腰三角形. 如果过点D作DEBC,交AB于点E,则图中有52. 已知:等腰三角形ABC的底角ABC和 ACB的平分线相交于点O. 求证:OBC为等腰三角形.ABCDEO证明: ABC和ACB的平分线相交于点O, ABD =DBC= , ACE =ECB= .12ABC12ACB DBC =ECB, OBC是等腰三角形.又 ABC是等腰三角形, ABC =ACB,3.求证:在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交.已知: 直线l1,l2,l3在同一平面内,且l1l2,l3与l1相交于点P.求证: l3与l2相
25、交.l1l2l3P 经过直线外一点,有且只有一条直线与已知直线平行假设不成立l3与l2 不相交l3l2l1l2假设_,那么_.这与“_ _”矛盾.所以_,即求证的命题正确.证明:因为已知_,所以过直线l2外一点P,有两条直线和l2平行,课堂小结课堂小结等腰三角形的判定等角对等边有两个角相等的三角形是等腰三角形反证法先假设结论不成立,然后推导与已知定理相矛盾的结果,从而证明原命题成立.1.1 等腰三角形第一章 三角形的证明 第4课时 等边三角形的判定及含30角的直角三角形的性质 学习目标1.能用所学的知识证明等边三角形的判定定理.(重点)2.掌握含30角的直角三角形的性质并解决有关问题.(难点)
展开阅读全文