一阶线性微分方程.ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一阶线性微分方程.ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一阶 线性 微分方程 ppt 课件
- 资源描述:
-
1、一阶线性微分方程 第四节 第七章 一、一阶线性微分方程一、一阶线性微分方程一阶线性微分方程标准形式:)()(ddxQyxPxy若 Q(x) 0, 0)(ddyxPxy若 Q(x) 0, 称为非齐次方程非齐次方程 .1. 解齐次方程分离变量xxPyyd)(d两边积分得CxxPylnd)(ln故通解为xxPCyd)(e称为齐次方程齐次方程 ;xxPCyd)(e对应齐次方程通解齐次方程通解非齐次方程特解xxPCd)(e2. 解非齐次方程)()(ddxQyxPxy用常数变易法常数变易法:,e)()()(xxPxuxyd则xxPud)(e)(xPxxPud)(e)(xQ故原方程的通解xxQxxPxxPd
2、e)(ed)(d)(CxxQyxxPxxPde)(ed)(d)(y即即作变换xxPuxPd)(e)(xxPxQxud)(e)(ddCxxQuxxPde)(d)(两端积分得例例1. 解方程 .) 1(12dd25xxyxy解解: 先解,012ddxyxy即1d2dxxyy积分得,ln1ln2lnCxy即2) 1( xCy用常数变易法常数变易法求特解.,) 1()(2xxuy则) 1(2) 1(2 xuxuy代入非齐次方程得21) 1( xu解得Cxu23) 1(32故原方程通解为Cxxy232) 1(32) 1(令在闭合回路中, 所有支路上的电压降为 0例例2. 有一电路如图所示, ,sintE
3、Em电动势为电阻 R 和电. )(tiLERQ解解: 列方程 .已知经过电阻 R 的电压降为R i 经过 L的电压降为tiLdd因此有,0ddiRtiLE即LtEiLRtimsindd初始条件: 00ti由回路电压定律:其中电源求电流感 L 都是常量,解方程:LtEiLRtimsindd00tiCxxQeyxxPxxPdd)(d)(e)(由初始条件: 00ti得222LRLECm)(ti tLRdetLEmsintLRmCtLtRLREe)cossin(222ttLRdedC利用一阶线性方程解的公式可得LERQtLRmLRLEtie)(222)cossin(222tLtRLREmtLRmLRL
4、Etie)(222)sin(222tLREm暂态电流稳态电流则令,arctanRL因此所求电流函数为解的意义: LERQ0d2d3yyxyyxx例例3. 求方程的通解 .解解: 注意 x, y 同号,d2d, 0,xxxyx此时不妨设yyxyx2dd2yyP21)(yyQ1)(由一阶线性方程通解公式通解公式 , 得exyy2de1(yyy2d故方程可变形为yy1y1 lndCy 所求通解为 )0(eCCyyxyCyln这是以x为因变量 y 为自变量的一阶线性方程Cylnd)0(C*二、伯努利二、伯努利 ( Bernoulli )方程方程 伯努利方程的标准形式:)1,0()()(ddnyxQyx
展开阅读全文