一元二次方程复习全版课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一元二次方程复习全版课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 复习 课件
- 资源描述:
-
1、一元二次方程一、一、定义及一般形式定义及一般形式: 1.只含有只含有_个未知数个未知数,且未知数的且未知数的最高次数为最高次数为_的的_方程方程叫做一元二次方程叫做一元二次方程.2.一元二次方程的一般形式是一元二次方程的一般形式是_(a0);其中其中a是是二次项系数二次项系数,b是一次项系数是一次项系数 ,c是是 常常数项数项.一一2整式整式ax2+bx+c=01、判断下面哪些方程是一元二次方程:、判断下面哪些方程是一元二次方程:222221x2y24(1)x -3x+4=x -7 ( ) (2) 2X = -4 ( )(3)3 X+5X-1=0 ( ) (4) 3x -20 ( )(5)13
2、 ( )(6)0 ( )xy 072cbxax)(( ) 2 2、把方程(、把方程(1-x)(2-x)=3-x1-x)(2-x)=3-x2 2 化为一般形式是:化为一般形式是:_, _, 其二次项系数是其二次项系数是_,_,一次项系数一次项系数是是_,_,常数项是常数项是_._.3 3、方程(、方程(m-2)xm-2)x|m|m| +3mx-4=0 +3mx-4=0是关于是关于x的一元二次的一元二次方程,则方程,则 ( )A.m=A.m=2 B.m=2 C.m=-2 D.m 2 B.m=2 C.m=-2 D.m 2 2 4 4、若、若x=2x=2是方程是方程x x2 2+ax-8=0+ax-8
3、=0的根,则的根,则a=_.a=_.2x2x2 2-3x-1=0-3x-1=02 2-3-3-1-1C C2 2二、你学过一元二次方程的哪些解法二、你学过一元二次方程的哪些解法? ?因式分解法因式分解法开平方法开平方法配方法配方法公式法公式法你能说出每一种解法的特点吗你能说出每一种解法的特点吗? ?方程的左边是完全平方式方程的左边是完全平方式, ,右边是非右边是非负数负数; ;即形如即形如x x2 2=a=a(a0)(a0) 1212xa,xaxa,xa1. 1.化化1: 1:把二次项系数化为把二次项系数化为1 1; ;2.2.移项移项: :把常数项移到方程的右边把常数项移到方程的右边; ;3
4、.3.配方配方: :方程两边同加方程两边同加一次项系数一次项系数 一半的平方一半的平方; ;4.4.变形变形: :化成化成5.5.开平方开平方,求解求解( (x xm m ) )a a+ += =2 2“配方法配方法”解方程的基本步骤解方程的基本步骤一除、二移、三配、四化、五解一除、二移、三配、四化、五解. .用用公式法公式法解一元二次方程的解一元二次方程的前提前提是是: :1. 1.必需是一般形式的一元二次方程必需是一般形式的一元二次方程: : ax ax2 2+bx+c=0(a0).+bx+c=0(a0). 2.b2.b2 2-4ac0.-4ac0. .0 04ac4acb b. .2a2
5、a4ac4acb bb bx x2 22 21.1.用因式分解法的用因式分解法的条件条件是是: :方程左边能够方程左边能够 分解分解, ,而右边等于零而右边等于零; ;2.2.理论理论依据依据是是: :如果两个因式的积等于零如果两个因式的积等于零 那么至少有一个因式等于零那么至少有一个因式等于零. .因式分解法解一元二次方程的一般因式分解法解一元二次方程的一般步骤步骤: :一移一移-方程的右边方程的右边=0;=0;二分二分-方程的左边因式分解方程的左边因式分解; ;三化三化-方程化为两个一元一次方程方程化为两个一元一次方程; ;四解四解-写出方程两个解写出方程两个解; ; x x2 2-3x+
6、1=0 -3x+1=0 3x 3x2 2-1=0 -1=0 -3t -3t2 2+t=0 +t=0 x x2 2-4x=2 -4x=2 2x 2x2 2x=0 x=0 5(m+2) 5(m+2)2 2=8=8 3y 3y2 2-y-1=0 -y-1=0 2x 2x2 2+4x-1=0 +4x-1=0 (x-2) (x-2)2 2=2(x-2)=2(x-2) 适合运用直接开平方法适合运用直接开平方法 ; 适合运用因式分解法适合运用因式分解法 ; 适合运用公式法适合运用公式法 ; 适合运用配方法适合运用配方法 . . 例:解一元二次方程例:解一元二次方程 1.用直接开平方法用直接开平方法:(x+2
7、)2=3.3.用公式法解方程用公式法解方程 : :3x3x2 2=4x+7=4x+72.2.用因式分解法解方程用因式分解法解方程:(y+2)y+2)2 2=3(y+2=3(y+2)4.用配方法解方程用配方法解方程 :4x2-8x-5=0用最好的方法求解下列方程:用最好的方法求解下列方程:1)1)(3x-23x-2)-49=0 -49=0 2)2)(3x-43x-4)= =(4x-34x-3) 3) 4y=13) 4y=1 y y32请用四种方法解下列方程请用四种方法解下列方程: : 4(x 4(x1)1)2 2 = (2x= (2x5)5)2 2先考虑开平方法先考虑开平方法, ,再用因式分解法
8、再用因式分解法; ;最后才用公式法和配方法最后才用公式法和配方法; ; 三、一元二次方程根的判别式三、一元二次方程根的判别式 002acbxax042 acb两不相等实根两不相等实根两相等实根两相等实根无实根无实根一元二次方程根的情况定理与逆定理042 acb042 acb两个不相等实根两个不相等实根 两个相等实根两个相等实根 无实根无实根(无解无解)acb42042 acb042 acb042 acb若一元二次方程有若一元二次方程有实数根实数根,则,则042 acb例题:例题:求证:关于求证:关于x x的方程的方程x x2 2-(m+2)x+2m-1=0-(m+2)x+2m-1=0有两个不相
9、等的实数根有两个不相等的实数根. .1 1、关于、关于x x的一元二次方程的一元二次方程有实数根,则有实数根,则m m的取值范围是的取值范围是_ _ 01)12xxm(2 2、关于、关于x x的方程的方程 有实数根,有实数根,则整数则整数a a的最大值是的最大值是_._.2(6)860axx练习:练习:ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2 2、公式法虽然是万能的,对任何一元二次方程都适用,、公式法虽然是万能的,对任何一元二次方程都适用,但不一定但不一定 是最简单的,因此在解方程时我们首先考是最简单的,因此在解方程时
10、我们首先考虑能否应用虑能否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等简单等简单方法,若不行,再考虑公式法(适当也可考虑配方法)方法,若不行,再考虑公式法(适当也可考虑配方法)3 3、方程中有括号时,应先用整体思想考虑有没有简单方、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。形式再选取合理的方法。1 1、直接开平方法直接开平方法因式分解法因式分解法练习检测练习检测1 1、下列方程中是关于、下列方程中是关于x x的一元二次方程的是(的一元二次方程的是( )0
11、.01.222cbxaxBxxA0523 .1)2)(1.(22yxyxDxxC2 2、一元二次方程、一元二次方程(3x-1)(2x+2)=x(3x-1)(2x+2)=x2 2-2-2化为一般形式为化为一般形式为_,_,二次项系数为二次项系数为_,_,一次项系数一次项系数为为_,_,常数项为常数项为_._.3 3、已知、已知x=1x=1是一元二次方程是一元二次方程x x2 2+ax+b=0+ax+b=0的一个根,则代数的一个根,则代数式式a a2 2+b+b2 2+2ab+2ab的值是的值是_._.4.4.下面是某同学在一次数学测验中解答的填空题,下面是某同学在一次数学测验中解答的填空题,其中
12、答对的是(其中答对的是( )A A、若、若x x2 2=4=4,则,则x=2 x=2 B B、若、若3x3x2 2=6x=6x,则,则x=2x=2C C、若、若x x2 2+x-k=0+x-k=0的一个根是的一个根是1 1,则,则k=2k=223222D、D、若若的的值值为为零零,则则xxxx5.5.一元二次方程一元二次方程x x2 2x x2=02=0的解是的解是_._.6 6(20142014广西贺州)已知关于广西贺州)已知关于x x的方程的方程x x2 2+(1+(1m)xm)x+ =0+ =0有两个不相等的实数根,则有两个不相等的实数根,则m m的最大整数值是的最大整数值是_42m9.
13、9.(20142014扬州扬州)已知关于)已知关于x x的方程的方程(k k1 1)x x2 2(k k1 1)x+ =0 x+ =0有两个相等的实数根,有两个相等的实数根,求求k k的值的值418 8、已知关于、已知关于x x的方程的方程(m(m2 2-1)x-1)x2 2+(m-1)x-2m+1=0,+(m-1)x-2m+1=0,当当m_m_时,是一元二次方程;当时,是一元二次方程;当m_m_时,是时,是一元一次方程;当一元一次方程;当m=_m=_时,时,x=0.x=0.7 7、写出一个一元二次方程,使它的两个根分别为、写出一个一元二次方程,使它的两个根分别为1 1,-2-2,则这个方程可
14、以是,则这个方程可以是_._.10.10.(20142014株洲)株洲)已知关于已知关于x x的一元二次方程的一元二次方程(a+ca+c)x x2 2+2bx+2bx+(a ac c)=0=0,其中,其中a a、b b、c c分别为分别为 ABCABC三边的长三边的长(1 1)如果)如果x=x=1 1是方程的根,试判断是方程的根,试判断ABCABC的形状,并的形状,并说明理由;说明理由;(2 2)如果方程有两个相等的实数根,试判断)如果方程有两个相等的实数根,试判断ABCABC的的形状,并说明理由;形状,并说明理由;(3 3)如果)如果ABCABC是等边三角形,试求这个一元二次方是等边三角形,
15、试求这个一元二次方程的根程的根 请同学们认真阅读下面的一段文字材料,然后解答请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题题目中提出的有关问题. . 为解方程为解方程(x(x2 21)1)2 25(x5(x2 21)+4=01)+4=0,我们可以将,我们可以将x x2 21 1视为一个整体,然后设视为一个整体,然后设x x2 21=y1=y,则原方程可化为,则原方程可化为y y2 25y+4=0 5y+4=0 解得解得y y1 1=1,y=1,y2 2=4.=4. 当当y=1y=1时,时,x x2 21=11=1,xx2 2=2=2,x=x= . .当当y=4y=4时,时,x
16、 x2 21=41=4,xx2 2=5=5,x=x= . . 原方程的解为原方程的解为x x1 1= = ,x x2 2= = ,x x3 3= = ,x x4 4= = . . 解答问题:解答问题: (2)(2)解方程(解方程(x x2 2-3 -3 )2 2 - 3(x- 3(x2 2-3)=4-3)=4222555选择适当的方法解下列方程选择适当的方法解下列方程: : x x2 22 21)1)1)(x1)(x(x(x8 81)1)(3x(3x1)1)(2x(2x7 78 849497)7)x(2xx(2x6 6 2x2x7)7)x(3xx(3x5 59x9x2)2)(x(x4 4 4x
17、4x1 13x3x3 32x2x5x5x2 2 1 1x x252516161 12 22 22 22 22 22 22 231214111) 1 (xxxx解方程027722)2(22xxxx若方程若方程ax2+bx+c=0(a0)的两根为的两根为x1、x2 ,则,则 x1+x2 = x1x2= ba ca若方程若方程x2+px+q=0(a0)的两根的两根 为为x1、x2 ,则,则 x1+x2 = x1x2= p q以以x1、x2为两根的一元二次方程为:为两根的一元二次方程为:x2(x1+x2)x+x1x2=0一元二次方程根与系数关系一元二次方程根与系数关系1、关于、关于x的一元二次方程的一
展开阅读全文