第八章预测供应链需求.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第八章预测供应链需求.pptx》由用户(可爱的嘎嘎)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八 预测 供应 需求
- 资源描述:
-
1、预测供应链需求预测供应链需求 CR (2004) Prentice Hall, Inc.Chapter 8I hope youll keep in mind that economic forecasting is far from a perfect science. If recent historys any guide, the experts have some explaining to do about what they told us had to happen but never did.Ronald Reagan, 19841产品计划三角形产品计划三角形Product i
2、n the Planning TriangleCR (2004) Prentice Hall, Inc.PLANNINGORGANIZINGCONTROLLINGTransport Strategy Transport fundamentals Transport decisionsCustomer service goals The product Logistics service Ord . proc. & info. sys.Inventory Strategy Forecasting Inventory decisions Purchasing and supply scheduli
3、ng decisions Storage fundamentals Storage decisionsLocation Strategy Location decisions The network planning process 计划计划 组织组织 控制控制Transport Strategy Transport fundamentals Transport decisionsCustomer service goalsThe product Logistics service Ord . proc. & info. sys.Inventory Strategy Forecasting I
4、nventory decisions Purchasing and supply scheduling decisions Storage fundamentals Storage decisionsLocation Strategy Location decisions The network planning process 库存战略 预测客户服务目标采购和供应时间决策存储基础知识存储决策产品物流服务订单管理和信息系统 库存决策 运输战略 运输基础知识 运输决策 选址战略 选址决策 网络规划流程2Forecasting in Inventory StrategyCR (2004) Pren
5、tice Hall, Inc.PLANNINGORGANIZINGCONTROLLINGTransport Strategy Transport fundamentals Transport decisionsCustomer service goals The product Logistics service Ord. proc. & info. sys.Inventory Strategy Forecasting Inventory decisions Purchasing and supply scheduling decisions Storage fundamentals Stor
6、age decisionsLocation Strategy Location decisions The network planning processPLANNINGORGANIZINGCONTROLLINGTransport Strategy Transport fundamentals Transport decisionsCustomer service goals The product Logistics service Ord. proc. & info. sys.Inventory Strategy Forecasting Inventory decisions Purch
7、asing and supply scheduling decisions Storage fundamentals Storage decisionsLocation Strategy Location decisions The network planning process3供应链预测什么供应链预测什么Demand, sales or requirements需求,销售或请求Purchase prices购买价格Replenishment and delivery times补给和交货时间CR (2004) Prentice Hall, Inc.48.1需求预测n1.需求的时间和空间特
8、征(Spatial versus Temporal Demand)n2.尖峰需求和规律性的需求(Lumpy versus Regular Demand)n3.派生需求和独立需求(Derived versus Independent Demand)5CR (2004) Prentice Hall, Inc.典型时间序列模式典型时间序列模式Typical Time Series Patterns:随机随机Random0501001502002500510152025TimeSalesActual salesAverage sales随机性或水平发展的需求,无趋势或季节性因素6CR (2004) P
9、rentice Hall, Inc.典型时间序列模式典型时间序列模式Typical Time Series Patterns:随机有趋势随机有趋势Random with Trend0501001502002500510152025TimeSalesActual salesAverage sales随机性需求,上升趋势,无季节性因素7CR (2004) Prentice Hall, Inc.Typical Time Series Patterns:Random with Trend & Seasonal0100200300400500600700800010203040Tim eSalesAct
10、ual salesTrend in salesSm oothed trend and seasonal sales随机性需求,有趋势,季节性因素8CR (2004) Prentice Hall, Inc.Typical Time Series Patterns:LumpyTimeSales尖峰需求模式9CR (2004) Prentice Hall, Inc.8.2预测方法预测方法1.定性方法Qualitative 调查法Surveys 专家系统Expert systems or rule-based2.历史映射法(时间序列分析Historical projection)移动平均Moving
11、average指数平滑Exponential smoothing3.因果或联想法Causal or associative回归分析Regression analysis4.协同Collaborative108.3 对物流管理者有用的方法对物流管理者有用的方法8.3.1.移动平均法移动平均法Moving AverageBasic formulatntiiAnMA11wherei = time periodt = current time periodn = length of moving average in periods Ai = demand in period iCR (2004) P
12、rentice Hall, Inc.11Example 3-Month Moving Average ForecastingMonth, iDemand formonth, iTotal demandduring past 3months3-monthmovingaverage.20120.21130360/312022110380/3126.6723140 360/312024110380/3126.672513026?CR (2004) Prentice Hall, Inc.12 加权移动平均加权移动平均Weighted Moving Averageperiod current in fo
13、recast period current in demand actual period next for forecast 0.30 to 0.01 usually constant smoothing where)1(formula smoothing exponential only, level basic, the to reduces which)1(.)1()1()1(then form, in exponential are )( weightsIf1.1133221112211ttttttntnttttniinnFAFFAFMAAAAAAMAwwwhereAwAwAwMAa
14、aaaaaaaaaaa13 I. Level only Ft+1= aAt + (1-a)Ft II. Level and trend St= aAt + (1-a)(St-1 + Tt-1) Tt= (St - St-1) + (1-)Tt-1 Ft+1= St + TtIII. Level, trend, and seasonality St= a(At/It-L) + (1-a)(St-1 + Tt-1) It= g(At/St) + (1-g)It-L Tt= (St - St-1) + (1-)Tt-1 Ft+1= (St + Tt)It-L+1where L is the time
15、 period of one full seasonal cycle. IV. Forecast errorMAD =|AtFNttN|1orS(AF )NFtt2t 1Nand SF 1.25MAD.8.3.2.指数平滑公式指数平滑公式Exponential Smoothing FormulasCR (2004) Prentice Hall, Inc.14CR (2004) Prentice Hall, Inc.Example Exponential Smoothing ForecastingTime series data1234Last year12007009001100This ye
16、ar14001000?QuarterGetting startedAssume a = 0.2. Average first 4 quarters of data and use for previous forecast, say Fo15CR (2004) Prentice Hall, Inc.Example (Contd)Begin forecasting9754/ )11009007001200(0FFirst quarter of 2nd year1000)975(8.0)1100(2.0)2.01 (2.0001FAFSecond quarter of 2nd year1080)1
17、000(8.0)1400(2.0)2.01 (2.0112FAF16CR (2004) Prentice Hall, Inc.Example (Contd)Third quarter of 2nd year1064)1080(8.0)1000(2.0)2.01 (2.0023FAFSummarizing1234Last year12007009001100This year14001000?Fore- cast100010801064Quarter17CR (2004) Prentice Hall, Inc.Example (Contd)Measuring forecast error as
18、MAD绝对差or RMSE (std. error of forecast) 标准差nFAMADnttt1|1)(12nFASntttF18CR (2004) Prentice Hall, Inc.Example (Contd)Using SF and assuming n=2408121080)(10001000)(140022FSNote To compute a reasonable average for SF, n should range over at least one seasonal cycle in most cases.19SF= 408Example (Contd)R
19、ange of the forecast0BiasnFAnttt1 F3=1064RangeIf forecast errors are normally distributed and the forecast is at the mean of the distribution, i.e., ,a forecast confidence band can be computed. The error distribution for the level-only model results is:Bias should be 0 or close to it in a model of g
20、ood fitCR (2004) Prentice Hall, Inc.8-1920CR (2004) Prentice Hall, Inc.Example (Contd)From a normal distribution table, z95%=1.96. The actual time series value Y for quarter 3 is expected to range between:or264 Y 18648001064)408(96.11064)(3FSzFY21CR (2004) Prentice Hall, Inc.校正趋势校正趋势Correcting for T
21、rend in ESThe trend-corrected model is St = aAt (1 a)(St-1 Tt-1) Tt = (St St-1) (1 )Tt-1Ft+1 = St Ttwhere S is the forecast without trend correction.Assuming a = 0.2, = 0.3, S-1 = 975, and T-1 = 0 Forecast for quarter 1 of this yearS0 = 0.2(1100) 0.8(975 + 0) = 1000T0 = 0.3(1000 975) 0.7(0) = 8F1 =
22、1000 8 = 100822Forecast for quarter 2 of this year S0 T0S1 = 0.2(1400) 0.8(1000 8) = 1086.4T1 = 0.3(1086.4 1000) 0.7(8) = 31.5F2 = 1086.4 31.5 = 1117.9Forecast for quarter 3 of this yearS2 = 0.2(1000) 0.8(1086.4 31.5) = 1094.3T2 = 0.3(1094.3 1086.4) 0.7(31.5) = 24.4F3 = 1094.3 24.4 = 1118.7, or 1119
23、CR (2004) Prentice Hall, Inc.Correcting for Trend in ES (Contd)23CR (2004) Prentice Hall, Inc.Correcting for Trend in ES (Contd)Summarizing with trend correction 1234Last year12007009001100This year14001000?Fore- cast100811181119Quarter24a01Fore-casterrorCR (2004) Prentice Hall, Inc.Optimizing a a f
24、or ESMinimize averageforecast error8-2425CR (2004) Prentice Hall, Inc.Controlling Model Fit in ESMSEFAtt signal TrackingTracking signal monitors the fit of the model to detect when the model no longer accurately represents the datawhere the Mean Squared Error (MSE) isntFtAMSEnt12)(If tracking signal
25、 exceeds a specified value (control limit), revise smoothing constant(s).n is a reasonable numberof past periods dependingon the application8-25268.3.3经典时间序列分解模型经典时间序列分解模型Classic Time Series Decomposition ModelBasic formulation F = T S C Rwhere F = 需求预测forecast T = 趋势水平trend S = 季节指数seasonal index C
展开阅读全文