第八章 相干光通信系统.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第八章 相干光通信系统.pptx》由用户(可爱的嘎嘎)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八章 相干光通信系统 第八 相干光 通信 系统
- 资源描述:
-
1、第八章 相干光纤通信系统8.1 相干光通信技术的基本原理 8.1.1 基本概念 8.1.2 相干光通信基本原理8.2 相干检测 8.2.1 本地振荡器 8.2.2 零差检测 8.2.3 外差检测 8.2.4 信噪比(SNR)8.3 光接收机 8.3.2 调制的实现8.4 光纤接收机 8.4.1 外差接收机 8.4.2零差接收8.5 系统性能 8.5.1异步解调外差系统 8.5.2外差同步解调系统 8.5.3零差系统 8.5.4野外试验 8.5.5 影响灵敏度下降的因素8.6 关键技术 迄今为止,所有实用化的光纤系统都是采用非相干的强度调制-直接检测(IM/DD)方式,这类系统成熟、简单,成本低
2、,性能优良,已经在电信网中获得广泛的应用,并仍将继续扮演主要的角色。然而,这种IM/DD方式没有利用光载波的相位和频率信息,无法像传统的无线通信那样实现外差检测,从而限制了其性能的进一步改进和提高。 随着光通信技术的发展,人们很自然地想到无线电技术中的外差接受方式。因此,出现了采用外差接受方式的通信系统即外差光通信系统,又称相干光通信系统。28.1.1 基本概念基本概念 强度调制-直接检波系统,虽然可以通过高码速来实现大容量传输,而且具有调制、解调较容易的优点,但是,从理论上来讲,这种调制系统所采用的光源不是理论上单一频率的相干光源,而有相当的频宽、对这种由一个频带组成的光源进行强度调制(调整
3、个信号的光强),显然,已调信号就具有相当宽的带宽(当然,相对于光纤本身的传输带宽来讲,仍然是个窄频带)。另外,在强度调制中,仅仅利用了光的振幅参量,相当于早期无线电通信中采用火花发射机那样,是一种噪声通信系统。它的传输容量和中断距离都受到限制。 相干光通信系统则采用单一频率的相干光做光源(载波),沿用无线电技术中早已实现的相干通信方式,再配合幅移键控(ASK), 频移键控(FSK)、相移键控(PSK)等调制方式,实现一种新型的光纤通信方式-这就是理论上具有先进性的外差光纤通信系统。3 相干光通信系统原理如图8-1所示。与强度调制-直接检测系统相比,其主要差别在于光接收机中增加了外差接收所需要的
4、本级振荡器(简称本振)和光混频器。图8-1相干光通信系统原理框图 在相干光通信系统传输的信号可以是模拟信号,也可以是数字信号。无论何种信号,其工作原理均可以用图8-1来加以说明。 4 图中的光载波经调制器受数字信号调制后形成已调信号光波。调制方式有很多种,将光信号通过调幅、调频或调相的方式被调制(设调制频率为s)到光载波上的,当该信号传输到接收端时,首先与频率为L本振光信号进行相干混合,然后由光电检测器进行检测,这样获得了中频频率为IF=s-L 的输出电信号,因为IF0,故称该检测为外差检测,那么当输出信号的频率IF=0(即s=L )时,则称之为零差检测,此时在接收端可以直接产生基带信号 。5
5、 根据平面波的传播理论,可以写出接收光信号Es(t)和本振光信号E(t)的复数电场分布表达式为L)(exp)(SSsstjEtE(8.1.1) )(exp)(LLLLtjEtE(8.1.2) 式中, Es-接收光信号的电场幅度值; EL-本振光信号电场幅度值 s-接收光信号的相位调制信息 L-本振光的相位的调制信息6当Es(t)和EL(t)彼此相互平行,均匀地入射到光电监测器表面上时,由于总入射光强I正比于 Es(t)+ EL(t),即)cos(2)(LSIFLSLStPPRPPRI(8.1.3) 式中,R为光电监测器的相应度,PS 、PL分别为接收光信号和本振光信号。一般情况下PLPS, ,
6、这样式(8.1.3)可以简化成)cos(2LSIFLSLtPPRRPI(8.1.4) 从上式中可以看出,其中第一项为与传输信息无关的直流项,因而经外差检测后的输出信号电流为(8.1.4)中的第二项,很明显其中含发射端传送信息:)cos(2)(LSIFLSoutPPRti (8.1.5) 对零差检测,IF=0 输出信号电流为)cos(2)(LSLsoutPPRti (8.1.6)7从式(8.1.5)和式(8.1.6)可以清楚地看到:(1)即使接收光信号功率很小,但由于输出电流与 成 正比,仍能够通过增大PL而 获得足够大的输出电流,这样,本振光相干检测中还起到了光放大的作用,从而提高了信号的接收
7、灵敏度。LP(2)由于在相干检测中,要求S-L 随时保持常数(IF或0),因而要求系统中所使用的光源具备非常高的频率稳定性、非常窄的光谱宽度以及一定的频率调谐范围。8(3)无论外差检测还是零差检测,其检测根据都来源于接收光信号与本振光信号之间的干涉,因而在系统中,必须保持它们之间的相位锁定,或者说具有一致的偏振方向。 按上面的分析,相干光纤通信系统的基本框图如图8-2所示,由图可以清楚地看出,该系统由光发射机、光纤和光接收机组成。图9-2 相干光通信系统结构图9 相干光通信系统与强度调制-直接检测系统相比,其主要差别在于光接收机中增加了外差接收所需要的本级振荡器(简称本振)和光混频器。 10
8、相干光波系统是信号光在接收端射到光电探测器之前用另外一个光波与它相干地混频,如图8-3所示.。图8-3光相干检测原理图11 在接收端,借用无线电通信文献中的术语,把产生本地光波的窄线宽激光器称作本地振荡器(LO,Local Oscillator),为了说明接收到的光信号与本地光混合后如何提高接收机的性能,让我们首先考虑接收光信号的光场)(exp)(SSsstjEtE(8.1.1) 式中S 是载波频率,ES 是幅值 ,s 是相位。与接收光信号光场类似,本振光的光场是:)(exp)(LLLLtjEtE(8.1.2) 式中EL、L和L分别是本振光的幅值、频率和相位。假定信号光和本振光极化相同,均可以
9、不考虑它们的相位。 12 图8-3中的光电探测器只响应强度。Es(t)+ E(t)。因为光功率与光强成正比,接收光功率可由 P = KEs(t)+ E(t)给出,式中K是比例常数。从(8.1.1)和(8.1.2)式,可以得到 I(t)表达式 LsIFLSLsPPPPtIcos2(8.1.7) 2SSKEP 2LLKEP LIF0(8.1.8) 角频率 与中频(IF,Intermediate Frequency)的关系式是IF2/IFIF。当 时,要想恢复基带信号,首先,LL0必须把接收光信号载波频率转变为中频 (典型值为0.1-5GHz),然后再把该中频转变成基带信号,这种相干检测称作外差检测
10、。当 时,可以把接收到的光信号直接转变成基带信号,这种方式称作零差检测。下面对此分别加以讨论。 IFL013 零差检测时,选择本振光光频L与信号光载波频率0相同,所以F= 0,使用式(8.1.7),光电探测器产生的光电流是 )cos(2)(LSIFLSLStPPRPPRI (8.1.3) 式中I =RP,R是探测器灵敏度。通常, ,所以 SLPP LLSPPP (8.1.3) 式中最后一项包含要传送的信息。考虑到本振光相位被锁定在信号光相位上,因此L=S,此时,零差信号由下式给出 LSPPtPRtI2(8.1.4) 由此式可看出零差检测的优点。假如,我们注意到直接检测的信号电流为 ,由此可见,
11、零差检测平均电信号功率比直接检测的信号功率增加 倍。既然,通常 ,所以该值将增加几个数量级。虽然散粒噪声也增加了,但是零差检测仍可提高信噪比(SNR)许多倍。)()(tRPtIsddSLPP4LSPP 14 零差检测的缺点是它对相位的变化非常敏感。因为(8.1.3)式中,最后一项L包含本振光相位,很显然L应被控制。理想情况下,除强调相位, L和S应该保持常数。实际上, L和S随时间随机摆动。不过,通过相位锁定环路,它们的差( S - L )几乎可以保持恒定。然而,这种锁定环路的实现并不容易,所以使零差接收机的设计相当复杂。此外,还要求信号光和本振光频率匹配,因此,对这两种光源提出苛刻的要求。使
12、用下节讨论的外差检测可以解决这些问题。15 在外差检测情况下,选择本振光频L与信号载波光频S不同,使其外差落在微波范围内。因为I=RP,所以(8.1.7)式可以表示成检测电流的表达式。 )cos(2)()(LsIFLsLstPPRPPRtI(8.1.10) 通常 ,所以第一项可认为是直流常数,很容易被滤除,此时外差信号由下面的交流项给出sLPP )cos()(2)(LsIFLsouttPtPRtI(8.1.11) 与零差检测类似,因为该式中本振光PL的出现,接收到的光信号被放大了,从而提高了SNR。然而,SNR的改进要比零差检测低两倍(3dB)。引起3dB代价的原因是信号功率与交流电流的平方成
13、正比,以及(8.1.11),式中cos的出现。 但是,3dB代价带来的优点是接收机设计相对简单,因为不再需要光相位锁定环路。虽然,S、LPL和的随机变化仍需要使用窄线宽的信号和本振光半导体激光器,然而异步解调方式对线宽的要求相当放松。这种特性使外差检测方式在实际相干光波系统中的实现变得容易。16 相干检测技术用于光波系统的优点,可用接收机信噪比(SNR,Signal-to-Noise Ratio)定量地描述。为了这个目的,我们首先直接检测接收机。因为散粒噪声 和热噪声 使接收机光电流在起伏摆动。总噪声功率为2s2T222Ts(8.1.12)式中fIIqds)(22fRTkLBT)/4(2(8.
14、1.14) (8.1.13) 式中Id是暗电流, 是接收机噪声等效带宽, 是绝对温度T时的热能量, 是负载电阻。(8.1.13)式中的I是探测器产生的总电流,并由(8.1.3)式(零差检测)或(8.1.10)式(外差检测)给出。fTkBLR17平均信号功率除以平均噪声功率就可以得到SNR。外差检测时,SNR由下式给出:)(2/2/ )(2222fIRPqPPRISNRdLLsout(8.1.15) 有零差检测时,假如(8.1.3)式中S=L,SNR则是(8.1.15)式的两倍。相干检测的主要优点从式(8.1.15)可以看出。因为在接收机可以控制本振光频率PL,使它足够大,即)2/(2fqRPL
15、(8.1.16) 从而使接收机噪声由散粒噪声所支配,即 。在相同的条件下,暗电流也可以忽略(IdB时,带宽趋近 2f,几乎与比特率无关。这种情况常常称作宽带FSK。当f B 时,带宽趋近2B,相应称作窄带FSK。 f /B称作FM指数, 是宽带FSK, 1是窄带FSK。FMFMFM28实现FSK要求一个能够改变入射光信号频率的调制器。LiNbO3电光材料能够产生一个与施加其上电压成正比的相差。在LiNbO3调制器上施加一个三角波(象锯齿形状的电压脉冲),就可实现FSK调制,因为线性相位的改变对应频率的改变。使用声波布拉格散射(Bragg Scattering)也可以实现FSK调制。这种调制器称
16、作声光调制器。它们的使用有时并不方便,而且频差也较小(1GHz)。通常实现FSK 调制的最简单方法是对半导体激光器直接调制。我们知道,半导体激光器工作电流的改变一起 发射光强和频率的改变。在ASK或OOK情况下,频率的变化使发射光脉冲产生尖峰(chirp),这是不希望发生的,但是相同的频率变化可被用来FSK调制。频率变化的典型值为0.1-1GHz/mA,因此,小的工作电流变化(约1mA)就可以产生1GHz的频率变化。况且,该电流的变化相当小,以至相邻码的幅值几乎没有改变。3.频移键控(频移键控(FSK)调制)调制29相干传输常用DFB半导体激光器,以为它具有单纵横和窄线宽的优良特性。DFB激光
17、器用于FSK调制时,在整个频带内FM响应应该平坦。遗憾的是它并非如此。半导体激光器通常在0.1-10MHz范围内,它的频率响应下降,如图8-5的下条曲线所示。图8-5 典型DFB半导体激光器的调制响应30半导体激光器频率调制响应的不平坦,将影响FSK相干系统的性能,已有许多技术可以解决这个问题。一种技术是使用均衡电路,不过它常使调制效率降低。另一种新型的多腔DFB激光器可用来实现平坦的FM响应。图8-5的上条曲线表示两腔DFB激光器的FM响应。从图可见,当调制频率接近1GHz时,曲线开始下降,但是它的调制效率很高。使用三腔DFB激光器,可以实现100kHZ到15GHz FM的平坦响应,同时可保
18、持单纵横和窄线宽(1MHz)特性。当通过直接调制实现FSK调制时,可以使“1”码和“0”码的频率(或相位)发生变化。FSK方式常常指的是相位连续频移键控(CPFSK Continuous-Phase FSK)。当码频间距2 =B/2( =1/2),也称CPFSK为最小频移键控(MSK,Minimum-Shift Keying)。 fFM31在ASK相干系统中,由于要求S保持恒定,所以职能使半导体激光器在一定注入电流下连续工作,这样用外调制方式,直接对其输出光进行调制,从而获得调制输出光,通常采用LiNbO3马赫干涉仪或定向耦合式的调制器。目前LiNbO3调制器的调制带宽可以高达20GHz,消光
19、比超过20dB。在PSK相干系统中,由于需要对相位S进行微调,同时要保持幅度As恒定,因而PSK调制也需要采用外调制器,可以利用LiNbO3晶体制成适合PSK调制用的相位调制器,也可以利用半导体材料来制作相位调制器,目前已经研究成功的量子阱半导体相位调制器,其调制电压为2.5伏,调制速率可达到10Gbit/s,由于在PSK相干系统中,对光源的相位稳定性要求非常高,这样才能保证能从光信号中提取到相位上的信息,因而采用了PSK 的一种变形方式-差分移相键控(DPSK)。因为在DPSK中,调制器是根据相邻码是否相同,来确定光载波的相位变化(0或),可以刊出光载波的向在相邻两个码元之间保持相对稳定,这
20、样便可以放松对光源的要求。32在PSK相干系统中,既可采用直接调制方式,也可以采用外调制方式。前面讲过,如果要利用注入电流调制实现ASK的话,则注入电流的较大变化会使载波的相位(或频率)发生很大的变化,对于半导体激光器,通常这种注入电流所引起的频率变化在0.1-1GHz/Ma,在FSK直接调制中正可以利用这种效应,以较小的电流(mA)变化,就可以产生1GHz的频移,同时由于电流变化很小,基本上可以保持信号幅度的不变。33根据相干检测的基本原理,可以由此勾画出相干光纤通信系统的基本框图。其发送端可以采用直接调制,也可以采用外调制方式,对光源载波进行幅度、频率或相位调制,在接收端,信号与本振光由1
21、:1的光纤定向耦合器合路后送到光电二极管进行混频,其输出信号有可能是中频信号,也可以是基群信号,这完全由信号与本振光的关系决定。如果输出信号为中频信号,那么必须再经过进一步解调,才能恢复出原发送信号,因而称该接收机为外差接收机,而称经混频后直接输出基群信号的接收机为零差接收机。 341.外差同步解调接收机外差同步解调接收机外差接收机分为外差同步解调接收机和外差包络解调接收机外差同步解调接收机的工作原理如图8-6所示。 图8-6 外差同步解调接收机示意图35由于本振光信号频率l和信号光频率s不相等,它们差一个频率(如: 1GHz),这样经光电检测器输出的是中频信号,其频谱分布如图8-7(c)所示
22、。为了恢复出基带信号,首先应让中频信号通过一个中频带通滤波器(中心频率为IF),并将其分为两路,一路经过载波恢复电路,从而恢复出中频载波信号,同时与另一路的中频信号进行混频,最后由低通滤波器输出基带信号,其信号分析过程如图8-7所示。2/IF从理论上分析,外差同步解调接收系统应具有很高的接收灵敏度,但由于同步解调需要从中频信号中分离出中频载波,因而系统较为复杂。同时,系统对激光器谱宽的要求极高,通常要采用外腔半导体激光器,以确保光谱很窄的要求,就目前的实验水平,其系统灵敏度还不如下面将介绍的外差包络解调接收系统。 36图8-7 外差同步解调信号分析过程 372. 外差包络解调接收机外差包络解调
23、接收机图8-8 是外差包络解调接收机组成原理方框图。从图中可以看出,它不要求恢复中频(微波载波),而是通过使用包络检波和低通滤波,直接将经带通滤波输出的信号If(t)转变为基带信号,从而使接收电路得以简化,送到判决电路的信号为:2/122)sin()cos(|sPsPfdiIiIII(8.3.1) 式中,和是高斯随机噪声成分,是散粒噪声引起的电流波动,其值由式(8.1.13)给出。图8-8 外差包络解调接收机38图8-9表示外差异步解调接收机的两种解调方式。FSK双滤波接收机使用两个支路处理“1”码和“0”码FSK信号,因为“1”码和“0”码的载波频率不同,因此产生的中频也不同。只要码频间距比
24、比特率足够大,“1”码和“0”码频谱重叠就可以忽略(频宽差FSK)。两个带宽滤波器(BPF)的中心频率之间的距离正好与码频间距相等,这样每个BPF只能让“1”码或“0”码通过。FSK双滤波接收机可以认为是由两个并行的ASK但滤波接收机组成,它们的输出在达判决电路之前混合。图6.6的单滤波接收机的带宽如果足够宽,以至于整个比特流可以通过的话,它也可被用于FSK解调。对码频间距小于或等于比特率的窄频差FSK信号,这种方式工作得很好。 39图8-9 外差异步解调接收机a位FSK双滤波器法 b为DPSK延迟解调法40异步解调不能用于PSK方式,因为发射光和本振光的相位没有被锁定,并随时间漂移。然而,使
25、用图8-9(b)表示的延迟法可以对DPSK进行异步解调。基本想法是让接收到的比特流与延时了1比特的该比特流相乘,相乘后的信号会有cos(K-K-1)的成分,因为信息以相差(K-K-1)被编码( K是第k个比特的相位),所以可被用来恢复基带信号。这种方式要求在相对短的期限内(几个比特周期)相位稳定,并使用窄线宽半导体激光器就可以实现。延时解调方式也可以用于CPSK,此时延时量取决于码频间距,并使延时后的信号相位偏差。41图8-10 为零差接收机的零差检测的信号频谱分析图。由此可见,在这种检测方式中,光信号是直接被转换成基带信号的,因而它既要求本振光与信号光的频率彼此相同,而且还要求它们的相位彼此
展开阅读全文