BigDataBench 大数据和AI基准测试程序集.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《BigDataBench 大数据和AI基准测试程序集.pptx》由用户(无敌的果实)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- BigDataBench 大数据和AI基准测试程序集 数据 AI 基准 测试 程序
- 资源描述:
-
1、大数据分析与生态系统论坛BigDataBench: 大数据和AI基准测试程序集大数据和BigDataBench:AI基准测试程序集1. 背景2. 基准测试基本原理3. 基准测试方法学4. 大数据和AI基准测试程序集: BigDataBenchBigDataBench: 大数据和AI基准测试程序集技术变革的基础. Technology. End of Dennard scaling: power becomes the key constraint. Ending of Moores Law: transistors improvement slows. Architectural. Limit
2、ation and inefficiencies in exploiting instruction levelparallelism end the uniprocessor era in 2004. Amdahls Law and its implications end “easy” multicore era. Products. PC/Server IoT, Mobile/CloudA New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design,Enhanced Secur
3、ity, Open Instruction Sets, and Agile Chip Development. John Hennessy and DavidPatterson, Stanford and UC Berkeley. June 4, 2018BigDataBench: 大数据和AI基准测试程序集技术变革的机遇. Software-centric. Modern scripting languages are interpreted,dynamically-typed and encourage reuse. Efficient for programmers but not fo
4、r execution. Hardware-centric. Only path left is Domain Specific Architectures. Just do a few tasks, but extremely well. Combination. Domain Specific Languages & ArchitecturesA New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design,Enhanced Security, Open Instruction S
5、ets, and Agile Chip Development. John Hennessy and DavidPatterson, Stanford and UC Berkeley. June 4, 2018BigDataBench: 大数据和AI基准测试程序集面临的关键问题 Understanding workloads Domain-specific hardware & Software co-design Open-source softwares/ hardwaresA New Golden Age for Computer Architecture: Domain-Specifi
6、c Hardware/Software Co-Design,Enhanced Security, Open Instruction Sets, and Agile Chip Development. John Hennessy and DavidPatterson, Stanford and UC Berkeley. June 4, 2018BigDataBench: 大数据和AI基准测试程序集1. 背景2. 基准测试基本原理3. 基准测试方法学4. 大数据和AI基准测试程序集: BigDataBenchBigDataBench: 大数据和AI基准测试程序集基准测试(Benchmark)“ T
7、he process of running a specificprogram or workload on a specific machineor system and measuring the resultingperformance .”Saavedra, R. H., Smith, A. J.: Analysis of benchmark characteristics andbenchmark performance prediction, ACM Transactions on Computer System,vol. 14, no. 4, (1996) 344-384BigD
8、ataBench: 大数据和AI基准测试程序集基准测试集(Benchmark Suite) A popular measure of performance with avariety of applications To overcome the danger of placing too manyeggs in one basket the weakness of any one benchmark is lessenedby the presence of the other benchmarks characterize the relative performance e.g. EE
9、MBC, SPECBigDataBench: 大数据和AI基准测试程序集基准测试集的构建RelevantGoodBenchmarkPortableScalableSimpleBigDataBench: 大数据和AI基准测试程序集TPC系列基准测试程序集The Transaction Processing Performance Council Domain specific TPC Benchmarks: talked by Charles Levine at 1997 No single metric possible The more general the benchmark, the
10、less useful it is for anythingin par ticular. A benchmark is a distillation of the essential attributes of aworkload Principles Charles Levine: TPC-C: The OLTP Benchmark, Sigmod, 1997 Relevant meaningful within the target domain Simple Good metric(s) linear, orthogonal, monotonic Portable applicable
11、 to a broad spectrum ofhardware/architecture Coverage does not oversimplify the typical environment Acceptance Vendors and Users embrace itBigDataBench: 大数据和AI基准测试程序集SPEC系列基准测试程序集Systems Performance Evaluation Cooperative Principles Application-oriented test “real-life” situations Portability writte
12、n in a platform neutral programminglanguage Repeatable and reliable Consistency and fairness each specification mustdefine clear rules for executing and reporting resultsBigDataBench: 大数据和AI基准测试程序集PARSEC基准测试程序集A parallel benchmark suite for multiprocessors Principles: flexibility and easy to use Aut
13、omatization single, common interface Modularity simply handling Abstraction abstract from details Encapsulation details encapsulated in standardizedconfiguration files Logging logging important information for recreation-CHRISTIAN BIENIA: Benchmarking Modern Multiprocessors, 2011BigDataBench: 大数据和AI
14、基准测试程序集大数据基准测试程序集 Proposed by Big Data BenchmarkingCommunity (http:/clds.sdsc.edu/bdbc) simple to implement and execute Cost effective Timely? not fully understood VerifiableBigDataBench: 大数据和AI基准测试程序集1. 背景2. 基准测试基本原理3. 基准测试方法学4. 大数据和AI基准测试程序集: BigDataBenchBigDataBench: 大数据和AI基准测试程序集基准测试程序的构建方法 Top-
15、down: representative program selection can yield accurate representations of the program space of interest usually impossible to make any form of hard statements about therepresentativeness Bottom-up: diverse range of characteristics program characteristics are quantities that can be measured andcom
16、pared not all portions of the characteristics space are equally important- C. Bienia. Benchmarking modern multiprocessors. PhDthesis, Princeton University, 2011.BigDataBench: 大数据和AI基准测试程序集TPC-C 构建方法学 Functions of Abstraction a mid-weight read-write trans- action (i.e., New-Order) a light-weight read
展开阅读全文