二次函数的应用(1)-完整版课件PPT.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《二次函数的应用(1)-完整版课件PPT.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 应用 完整版 课件 PPT
- 资源描述:
-
1、新浙教版数学九年级(上)新浙教版数学九年级(上)1.4 1.4 二次函数的应用二次函数的应用 (1 1)1 1、二次函数、二次函数y=ax2+bx+c(a0)y=ax2+bx+c(a0)何时有最大值或何时有最大值或最小值?最小值?2 2、如何求二次函数的最值?、如何求二次函数的最值?配方法配方法公式法公式法求下列二次函数的最大值或最小值:求下列二次函数的最大值或最小值:y=y=x2x24x4xy =-(x2-4x)= =-(x2-4x+22-22)=y =-(x2-4x)= =-(x2-4x+22-22)=(x(x2)22)24 4所以:当所以:当x=2x=2时,时,y y 达到最大值为达到最
2、大值为4.4.解:因为解:因为 1 10 0,则图像开口向下,则图像开口向下,y y有最大值有最大值当当x= x= 时,时, y y达到最大值为达到最大值为b422a2 24acb44aw(1).设矩形的一边设矩形的一边AB=xm,那么那么AD边的长度如何表示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大 w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两直角边上. .MN40m30mABCDw(1).设矩形
3、的一边设矩形的一边AB=xm,那么那么AD边的长度如何表示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大 w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两直角边上. .ABCDMN 3: 1 .,30.4ADbmbx 解设易得40m30m xxxxxby30433043.22.30020432x.30044,202:2abacyabx最大值时当或用公式xmbmw(1).如果设矩形的一边如果设矩形的一边AD=
4、xm,那那么么AB边的长度如何表示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大 w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两直角边上. .ABCDMN40m30mbmxm 4: 1 .,40.3ABbmbx 解设易得 xxxxxby40344034.22.30015342x.30044,152:2abacyabx最大值时当或用公式w(1).设矩形的一边设矩形的一边BC=xm,那么那么AB边的长度如何表
5、示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大 w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCDABCD,其顶点其顶点A A和点和点D D分别在两直角边上分别在两直角边上,BC,BC在斜边上在斜边上. .ABCDMNP40m30mxmbm : 1 .50 ,24 .MNm PHm解由勾股定理得 xxxxxby242512242512.22.3002525122x.30044,252:2abacyabx最大值时当或用公式12,24.25ABbmbx 设易得HG1.理解
6、问题理解问题;“二次函数应用” 的思路 w本节本节“最大面积最大面积”解决问题的过程,你能总结一解决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴交流下解决此类问题的基本思路吗?与同伴交流. .2.分析问题中的变量和常量分析问题中的变量和常量,以及它们之间的关系以及它们之间的关系;3.用数学的方式表示出它们之间的关系用数学的方式表示出它们之间的关系;4.做数学求解做数学求解;5.检验结果的合理性检验结果的合理性,拓展等拓展等.1 1、用长为、用长为8 8米的铝合金制成如图窗框,一边靠米的铝合金制成如图窗框,一边靠2cm2cm的墙的墙问窗框的宽和高各为多少米时,窗户的透光面积最大?问窗
7、框的宽和高各为多少米时,窗户的透光面积最大?最大面积是多少?最大面积是多少?解:设窗框的一边长为解:设窗框的一边长为x x米,米,x又令该窗框的透光面积为又令该窗框的透光面积为y y米,那么:米,那么:y= xy= x即:即:y=y=0.5x20.5x24x4x则另一边的长为则另一边的长为 米,米,合作探究合作探究82x82x82x 2 2、用长为、用长为8 8米的铝合金制成如图窗框,问窗框的宽和高米的铝合金制成如图窗框,问窗框的宽和高各多少米时,窗户的透光面积最大?最大面积是多少?各多少米时,窗户的透光面积最大?最大面积是多少?合作探究合作探究解:设矩形窗框的面积为解:设矩形窗框的面积为y,
展开阅读全文