人教版九年级数学上册全套ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版九年级数学上册全套ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 全套 ppt 课件 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、实际问题 1. 正方形桌面的面积正方形桌面的面积是是 m2 ,求它的边长。,求它的边长。94可以直接计算出结果。可以直接计算出结果。提示提示根据正方形面积公式根据正方形面积公式 S = a2 ,得到,得到9342a cm 可以用列方程求解吗?可以用列方程求解吗?a2 = 94新课导入2.两个连续正奇数的积是两个连续正奇数的积是 255,求这两个数。,求这两个数。实际问题 可以直接计可以直接计算出结果吗?算出结果吗?1,2,3,4,5,6 ?可以用列方程求解。可以用列方程求解。提示提示设前一个奇数为设前一个奇数为 x , 则后一个奇数为则后一个奇数为 x + 2x( x 2 ) = 255整理,
2、得整理,得x2 2x = 255 【知识与能力】【知识与能力】 了解一元二次方程的概念、一般式了解一元二次方程的概念、一般式 ax2 bx c = 0(a0)及其派生的概念。及其派生的概念。 应用一元二次方程概念解决一些简单题目。应用一元二次方程概念解决一些简单题目。通过设置问题,建立数学模型,模仿一元一通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义。次方程概念给一元二次方程下定义。 教学目标 【过程与方法】【过程与方法】 通过丰富的实例,让学生合作探讨,老师点通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。评分析,建立数学模型。 根据数学模型恰如根据数学模型
3、恰如其分地给出一元二次方程的概念。其分地给出一元二次方程的概念。 结合八册上整式中的有关概念介绍一元二次结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。方程的派生概念,如二次项等。 【情感态度与价值观】【情感态度与价值观】 经历由事实问题中抽象出一元二次方程等经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的二次方程也是刻画现实世界中的数量关系的一个有效数学模型。一个有效数学模型。 一元二次方程概念、一般形式及有关概念。一元二次方程概念、一般形式及有关概念。 判定一个数是否是方
4、程的根。判定一个数是否是方程的根。 由实际问题列出的一元二次方程,解出根后由实际问题列出的一元二次方程,解出根后还要考虑这些根是否确定是实际问题的根。还要考虑这些根是否确定是实际问题的根。教学重难点x2 2x = 255 像这样的方程有广泛的应用,继续像这样的方程有广泛的应用,继续解决一些实际问题,总结一元二次方程解决一些实际问题,总结一元二次方程的概念。的概念。 3. 用用 11 cm长的铁丝,折成一个面积为长的铁丝,折成一个面积为 30 cm2的矩形,求这个矩形的长与宽的矩形,求这个矩形的长与宽.实际问题设矩形的长为设矩形的长为 x cm,则宽为(则宽为(11x ) cm ,x( 11x)
5、整理,得整理,得x2 11x = 30提示提示根据矩形的面积为根据矩形的面积为30 cm2,得,得= 30几何图形几何图形面积问题面积问题 4. 长长 5 m的梯子斜靠在墙上,梯子的底端与墙的梯子斜靠在墙上,梯子的底端与墙的距离是的距离是3 m。若梯子底端向左滑动的距离与梯子。若梯子底端向左滑动的距离与梯子顶端向下滑动的距离相等,求梯子滑动的距离。顶端向下滑动的距离相等,求梯子滑动的距离。实际问题5 m3 m勾股定理勾股定理问题问题3 m5 m设梯子滑动的距离为设梯子滑动的距离为 x m, 则滑动后梯子顶端离地面(则滑动后梯子顶端离地面(4x )m ,梯子底端离墙(梯子底端离墙(3x)m, 根
6、据勾股定理,滑动前梯子根据勾股定理,滑动前梯子的顶端离地面的顶端离地面 4 m,提示提示(4x)2 (3x)2滑动后,三边仍符合勾股定理,得滑动后,三边仍符合勾股定理,得= 525 mx4xx整理,得整理,得2x2 2x = 0实际问题 5. 你遇到过下面的难题吗?你知道竹竿有多你遇到过下面的难题吗?你知道竹竿有多长吗?请看动画。长吗?请看动画。整理,得整理,得设竹竿的长为设竹竿的长为 x 尺,尺, 根据勾股定理,得根据勾股定理,得(x3)2 (x6)2= x2x218x45 = 0提示提示勾股定理勾股定理问题问题3尺尺6尺尺x 3x 6观观 察察x2 2x = 255a2 = 94x2 11
7、x = 302x2 2x = 0 x218x45 = 0这些方程有什么共同点?这些方程有什么共同点? 方程两边方程两边都是整式。都是整式。 方程中只含方程中只含有一个未知数。有一个未知数。 未知数的未知数的最高次数是最高次数是2。知识要点知识要点一元一元 方程两边都是整式,只含有方程两边都是整式,只含有一个未一个未知数知数,并且未知数的,并且未知数的最高次数是最高次数是2的方的方程,叫做程,叫做一元二次方程一元二次方程(quadratic equation in one unknown)。)。二次二次 下列哪些是一元二次方程?下列哪些是一元二次方程?3252xx20 x 2(3)(24)xxx
8、23(31)(2)yyy2321xxx2351xx 判断一个方判断一个方程是否为一元二程是否为一元二次方程,不能只次方程,不能只看表面,能化简看表面,能化简时应先化简。时应先化简。一元二次方程必须符合三个条件一元二次方程必须符合三个条件n 整式方程。整式方程。n 一个未知数。一个未知数。n 未知数的最高次数为未知数的最高次数为 2。x2 2x = 255a2 = 94x2 11x = 302x2 2x = 0 x218x45 = 0 一元二次方程有很多很多,一元二次方程有很多很多,你能表示出它们的一般形式吗?你能表示出它们的一般形式吗?ax2 + bx +c = 0二次项二次项一次项一次项常数
9、项常数项二次项系数二次项系数一次项系数一次项系数a0一元二次方程的一般形式一元二次方程的一般形式知识要点知识要点 当当 a = 0 时,方程变为时,方程变为 bxc = 0 ,不再,不再是一元二次方程。是一元二次方程。为什么要限制为什么要限制a0,b、c 可以为零吗?可以为零吗?的强调的强调ax2 + bx +c = 0n “ = ”左边最多有三项,一次项、常数左边最多有三项,一次项、常数项可不出现,但二次项必须有。项可不出现,但二次项必须有。n “ = ”左边按未知数左边按未知数 x 的降幂排列。的降幂排列。n “ = ”右边必须整理为右边必须整理为 0。例题 将方程将方程 化成一元二化成一
10、元二次方程的一般形式,并写出其中的二次项次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。系数、一次项系数及常数项。 825218xx其中二次项系数为其中二次项系数为 4,解:解:去括号,得:去括号,得:移项,合并同类项,得一般形式为:移项,合并同类项,得一般形式为:一次项系数为一次项系数为 26,常数项为常数项为 22。240 1610418xxx2426220 xx例题 将方程将方程 化成一化成一元二次方程的一般形式,并写出其中的二元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。次项系数、一次项系数及常数项。 21221xxx其中二次项系数为其中二次项系数为
11、2,解:解:去括号,得:去括号,得:移项,合并同类项,得一般形式为:移项,合并同类项,得一般形式为:一次项系数为一次项系数为 2,常数项为常数项为4。222141xxx 22240 xxx 22xx两个连续正奇数的积是两个连续正奇数的积是 255,求这两个数。,求这两个数。设前一个奇数为设前一个奇数为 x , 则后一个奇数为则后一个奇数为 x + 2,x( x 2 ) = 255整理,得整理,得x2 2x = 255前面的前面的“实际问题实际问题2”中:中:回顾回顾1311143131951525511172551519500前面的前面的“实际问题实际问题 4”中:中:回顾回顾x 222xx0
12、01 02 43 124 24 5 406 607845 m3 m设梯子滑动的距离为设梯子滑动的距离为 x m,2x2 2x = 0 长长 5 m的梯子斜靠在墙上,梯子的底的梯子斜靠在墙上,梯子的底端与墙的距离是端与墙的距离是3 m。若梯子底端向左滑。若梯子底端向左滑动的距离与梯子顶端向下滑动的距离相等,动的距离与梯子顶端向下滑动的距离相等,求梯子滑动的距离。求梯子滑动的距离。x =17归纳归纳当当时,时,x = 15当当时,时,x2 2x = 255x = 0当当时,时,x = 1当当时,时,2x2 2x = 0 x =17,x = 15 都是方程都是方程 x2 2x = 255 的解。的解
13、。x = 0,x = 1 都是方程都是方程 2x2 2x =0 的解。的解。 为了与以前所学的一元一次方程等只为了与以前所学的一元一次方程等只有一个解的区别,我们称:有一个解的区别,我们称: 一元二次方程一元二次方程的解也叫做一元二次方程的的解也叫做一元二次方程的根根(root)。)。知识要点知识要点x =17,x = 15 都是方程都是方程 x2 2x = 255 的解。的解。x = 0,x = 1 都是方程都是方程 2x2 2x =0 的解。的解。两个连续两个连续正正奇数的积是奇数的积是 255,求这两个数。,求这两个数。x =17,x = 15 都是方程都是方程 x2 2x = 255
14、的解。的解。 这两个解都是该这两个解都是该实际问题的答案吗?实际问题的答案吗?观观 察察只有只有 x = 15 是该题的答案。是该题的答案。即这两个正奇数为即这两个正奇数为 15、17。注意注意 由实际问题列出方程并得出方程由实际问题列出方程并得出方程的解后,还要考虑这些解是否确实是的解后,还要考虑这些解是否确实是实际问题的解。实际问题的解。 下列方程的根是什么?下列方程的根是什么?2216402 360 xx(), ( )18x 12x 28x 22x 只含有一个未知数,并且未知数的最高次数只含有一个未知数,并且未知数的最高次数是是 2的整式方程叫做一元二次方程。的整式方程叫做一元二次方程。
15、1.一元二次方程的概念:一元二次方程的概念: 2.一元二次方程的一般形式一元二次方程的一般形式: 一般地,任何一个关于一般地,任何一个关于 x 的一元二次方程都的一元二次方程都可以化为可以化为 (a,b,c为常数,为常数,a0)的形式,称为一元二次方程的一般形式。的形式,称为一元二次方程的一般形式。20axbxc课堂小结 也叫做一元二次方程的根。也叫做一元二次方程的根。3. 一元二次方程的解:一元二次方程的解: 4. 实际问题与一元二次方程的联系:实际问题与一元二次方程的联系: 将实际问题转化为一元二次方程并得出解后,将实际问题转化为一元二次方程并得出解后,要考虑是否符合题目要求及实际情况。要
16、考虑是否符合题目要求及实际情况。 1. 求证:关于求证:关于 x 的方程(的方程(m28m+17)x2 + 2mx + 1 = 0, 不论不论 m 取何值,该方程都是一元二次方程。取何值,该方程都是一元二次方程。 证明:2410m 2281741mmm240m28170mm 即二次项系数不等于即二次项系数不等于 0,不论,不论 m 取取何值,该方程都是一元二次方程。何值,该方程都是一元二次方程。随堂练习 2. 根据下列问题,列出关于根据下列问题,列出关于 的方程,并的方程,并将其化为一元二次方程的一般形式:将其化为一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是个完全相同的正方
17、形的面积之和是25,求正方形的边长求正方形的边长 ; (2)一个矩形的长比宽多)一个矩形的长比宽多2,面积是,面积是100,求矩形的长求矩形的长 ; xxx24250 x 221000 xx (3)把长为)把长为1的木条分成两段,使较短的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的一段的长与全长的积,等于较长一段的长的平方,求较短一段的长平方,求较短一段的长 ; (4)一个直角三角形的斜边长为)一个直角三角形的斜边长为10,两,两条直角边相差条直角边相差2,求较长的直角边长,求较长的直角边长 ;xx224960 xx2310 xx 3. 将下列方程化为一元二次方程的一般将下列方程
18、化为一元二次方程的一般形式,并写出其中的二次项系数、一次项系形式,并写出其中的二次项系数、一次项系数及常数项。数及常数项。22514481422532183xxxx xxxx (1) (2) (3) (4) 原方程一般形式二次二次项系项系数数一次一次项系项系数数常常数数项项2514xx 2481x 4225x x32183xxx25410 xx 24810 x 248250 xx23710 xx 514481042583174. 下面哪些数是方程下面哪些数是方程 的根?的根? 4,3,2,1,0,1,2,3,4 0121022xx解:将上面的这些数代入后,解:将上面的这些数代入后, 只有只有2
19、和和3满足方程的等式,满足方程的等式,所以所以 x =2或或 x =3是一元二次方程的两根。是一元二次方程的两根。 5. 试写出方程试写出方程 的根,你能写的根,你能写出几个?出几个?02 xx根分别为根分别为0,1。习题答案习题答案1. (1)3x26x1= 0,3,-6,1 (2)4x25x81= 0,4,5,81 (3)x25x = 0,1,5,0 (4)x22x1= 0,1,2,1 (5)x210 = 0,1,0,10 (6)x22x2= 0,1,2,221.2解一元二次方程(第解一元二次方程(第1课时)课时) 学习目标:学习目标:1会用直接开平方法解一元二次方程,理解配方的会用直接开
20、平方法解一元二次方程,理解配方的 基本过程,会用配方法解一元二次方程基本过程,会用配方法解一元二次方程;2在探究如何对比完全平方公式进行配方的过程中,在探究如何对比完全平方公式进行配方的过程中, 进一步加深对化归的数学思想的理解进一步加深对化归的数学思想的理解 学习重点:学习重点:理解配方法及用配方法解一元二次方程理解配方法及用配方法解一元二次方程课件说课件说明明问题问题1在设计人体雕像时,使雕像的上部(腰以在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感按此比例,如果雕身)的高度
21、比,可以增加视觉美感按此比例,如果雕像的高为像的高为 2 m,那么它的下部应设计为多高?,那么它的下部应设计为多高?解:设雕像的下部高为解:设雕像的下部高为 x m,据题意,列方程得据题意,列方程得整理得整理得x 2 + 2x - - 4 = 0ACB1创设情境,导入新知创设情境,导入新知x 2 = 2 2 - - x ,( )你会解哪些方程,如何解的?你会解哪些方程,如何解的?二元、三元二元、三元一次方程组一次方程组一元一次方程一元一次方程一元二次方程一元二次方程消元消元降次降次思考:如何解一元二次方程思考:如何解一元二次方程1创设情境,导入新知创设情境,导入新知问题问题2解方程解方程 x
22、2 = 25,依据是什么?,依据是什么?解得解得x 1 = 5,x 2 = - - 5平方根的意义平方根的意义请解下列方程:请解下列方程: x 2 = 3,2x 2 - - 8=0,x 2 = 0,x 2 = - - 2这些方程有什么共同的特征?这些方程有什么共同的特征?结构特征:方程可化成结构特征:方程可化成x 2 = p的形式,的形式,平方根平方根的意义的意义降次降次(当(当 p0 时)时)px问题问题3解方程:(解方程:(x + 3)= 5 22推导求根公式推导求根公式问题问题4怎样解方程怎样解方程 x 2 + 6x + 4 = 0?x 2 + 6x + 9 = 5(x + 3)= 52
23、2推导求根公式推导求根公式试一试:试一试:与方程与方程 x2 + 6x + 9 = 5 比较,比较,怎样解方程怎样解方程 x2 + 6x + 4 = 0 ? 怎样把方程怎样把方程化成方程化成方程的形式呢?的形式呢? 怎样保证怎样保证变形的正变形的正确性呢?确性呢? 即即由此可得由此可得解:解:左边写成平左边写成平方形式方形式 移项移项 x2 + 6x = - -4 两边加两边加 9 = - -4 + 9 x2 + 6x + 92推导求根公式推导求根公式(x + 3)= 52回顾解方程回顾解方程过程:过程:两边加两边加 9,左边,左边配成完全平方式配成完全平方式 移项移项左边写成完全左边写成完全
24、平方形式平方形式 降次降次 解一次方程解一次方程x2 + 6x + 4 = 0 x2 + 6x = - -4x2 + 6x + 9 = - -4 + 953x,或,或53 x53x,531x532x2推导求根公式推导求根公式(x + 3)= 52想一想:想一想:以上解法中,为什么在方程以上解法中,为什么在方程两边加两边加 9?加其他数可以吗?如果不可以,说明理由加其他数可以吗?如果不可以,说明理由两边两边加加 9 一般地,当二次项系数为一般地,当二次项系数为 1 时,二次式加上一次项时,二次式加上一次项系数一半的平方,二次式就可以写成完全平方的形式系数一半的平方,二次式就可以写成完全平方的形式
25、x2 + 6x = - -4 x2 + 6x + 9 = - -4 + 92推导求根公式推导求根公式(x + 3)= 52269,即,即 2 = 3 2 = 9 ( )议一议:议一议:结合方程的解答过结合方程的解答过程,说出解一般二次程,说出解一般二次项系数为项系数为 1 的一元二次方程的基本的一元二次方程的基本思路是什么?具体步思路是什么?具体步骤是什么?骤是什么?配成完全平方形式配成完全平方形式 通过通过 来解一元二次方程的方法,叫做来解一元二次方程的方法,叫做配配方法方法配配方方具体步骤:具体步骤:(1)移项;)移项;(2)在方程两边都加上一次项)在方程两边都加上一次项系数一半的平方系数
展开阅读全文