公式法因式分解课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《公式法因式分解课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公式 因式分解 课件
- 资源描述:
-
1、学习目标 1 知识与技能:掌握使用公式法进行因式分解的方法,并能熟练使用公式法进行因式分解; 2 过程与方法:通过知识的迁移经历运用平方差公式和完全平方公式分解因式的过程; 3 情感态度与价值观:在应用公式法分解因式的过程中让学生体验换元思想,同时增强学生的观察能力和归纳总结的能力。根据因式分解的概念,判断下列由左边到右根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为边的变形,哪些是因式分解,哪些不是,为什么?什么? 1(2x-1)2=4x2-4x+1 24x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 2. 3x29xy3x3x(x3y1) )2
2、1(2.42aaaaa- -+ += =- -+ 和老师比一比,看谁算的又快又准确! 比一比比一比815715知识探索知识探索)(ba ba-+=22ba - -)(22bababa-+=-整式乘法整式乘法因式分解因式分解两个数的两个数的和和与两个数的与两个数的差差的的乘积乘积,等于这两个,等于这两个数的数的平方差平方差。两个数的两个数的平方差平方差,等于这两个数的,等于这两个数的和和与这与这两个数的两个数的差差的的乘积乘积. .平方差公式:平方差公式:()公式左边:()公式左边:(是一个将要(是一个将要被分解因式被分解因式的多项式)的多项式)被分解的多项式含有被分解的多项式含有两项两项,且这
3、两项,且这两项异号异号,并且能写成并且能写成()()()()的形式。的形式。(2) 公式右边公式右边:(是(是分解因式的结果分解因式的结果)分解的结果是两个分解的结果是两个底数底数的的和和乘以乘以两个两个底数底数的的差差的形式。的形式。)(22bababa-+=- -下列多项式能转化成下列多项式能转化成()()()()的形式吗?的形式吗?如果能,请将其转化成如果能,请将其转化成()()()()的形式。的形式。(1) m(1) m2 2 1 1(2)4m(2)4m2 2 9 9(3)4m(3)4m2 2+9+9(4)x(4)x2 2 25y 25y 2 2(5) (5) x x2 2 25y25
4、y2 2(6) (6) x x2 2+25y+25y2 2= = m m2 2 1 12 2= = (2m)(2m)2 2 3 32 2不能转化为平方差形式不能转化为平方差形式 x x2 2 (5y)(5y)2 2不能转化为平方差形不能转化为平方差形式式= = 25y25y2 2x x2 2 = =(5y)(5y)2 2 x x2 2a a2 2 b b2 2= (a = (a b) (a b) (a b)b)铺路之石铺路之石填空:填空:(1) ( )2 ; (2) 0.81( )2;(3)9m2 ( )2; (4) 25a2b2=( )2; (5) 4(a-b)2= 2; (6) (x+y)
5、2= 2。首页首页上页上页下页下页做一做做一做=(4x+y) (4x y)=(2x + y) (2x y)3131=(2k+5mn) (2k 5mn)a2 b2= (a b) (a b) 看谁快又对看谁快又对= (a+8) (a 8) (1)a2821(2)16x2 y22(3) y2 + 4x2913(4) 4k2 25m2n24)(22bababa-+=- -2006220052 =(2mn)2 - - ( 3( 3xy)xy)2 2 =(x+z)2 - - ( (y+p)y+p)2 2 =牛刀小试牛刀小试(一)一)把下列各式分解因式: 0.25m2n2 1 (2a+b)2 - (a+2b
6、)2 x2 -116y2 25(x+y)2 - 16(x-y)2 利用因式分解计算:牛刀小试(二)牛刀小试(二)首页首页上页上页下页下页不信难不倒你!不信难不倒你!用你用你学过学过的方法分解因式:的方法分解因式:4x4x3 3 - 9xy - 9xy2 2结论:结论:多项式的因式分解要多项式的因式分解要分解到不能再分解分解到不能再分解为止。为止。方法:方法:先考虑能否用先考虑能否用提取公因式法提取公因式法,再考虑能否用,再考虑能否用平方差公式平方差公式分解因式。分解因式。分解因式:分解因式:1.1. 4x4x3 3 - 4x - 4x 2. x2. x4 4-y-y4 4结论:结论:分解因式的
7、一般步骤:分解因式的一般步骤:一提、二套一提、二套多项式的因式分解要多项式的因式分解要分解到不能再分解分解到不能再分解为止。为止。a2 - b2=(a+b)(a - b)注意点:注意点:1.1.运用平方差公式分解因式的运用平方差公式分解因式的关键关键是要把分解的是要把分解的多项式看成两个数的平方差,尤其当多项式看成两个数的平方差,尤其当系数是分数系数是分数或小数或小数时,要正确化为两数的平方差。时,要正确化为两数的平方差。2.2.公式公式 a a - b - b = (a+b)(a-b) = (a+b)(a-b)中的字母中的字母 a a , , b b可可以是以是数数,也可以是,也可以是单项式
8、或多项式单项式或多项式,要注意,要注意“整整体体”“”“换元换元”思想的运用。思想的运用。3.3.当要分解的多项式是两个多项式的平方时,分当要分解的多项式是两个多项式的平方时,分解成的两个因式要进行解成的两个因式要进行去括号化简去括号化简,若有同类项,若有同类项,要进行合并,直至要进行合并,直至分解到不能再分解分解到不能再分解为止。为止。1.运用公式法分解因式运用公式法分解因式:(1) -9x2+4y2 (2) 64x2-y2z2(3) a2(a+2b)2-4(x+y)2 (4) (a+bx)2-1(5) (x-y+z)2-(2x-3y+4z)2试一试试一试创新与应用创新与应用2、已知、已知,
9、 x+ y =7, x-y =5,求代数式求代数式 x 2- y2-2y+2x 的值的值.1. 若若a=101,b=99,求求a2-b2的值的值.2. 1993-199能被能被200整除吗整除吗?还能被还能被哪些整数整除哪些整数整除?4. 若若n是整数是整数,证明证明(2n+1)2-(2n-1)2是是8的倍数的倍数.考考你考考你课前小测:课前小测:1.选择题:选择题:1)下列各式能用平方差公式分解因式的是(下列各式能用平方差公式分解因式的是( )A. 4X+y B. 4 x- (-y) C. -4 X-y D. - X+ y2) -4a +1分解因式的结果应是分解因式的结果应是 ( )A. -
10、(4a+1)(4a-1) B. -( 2a 1)(2a 1)C. -(2a +1)(2a+1) D. -(2a+1) (2a-1)2. 把下列各式分解因式:把下列各式分解因式:1)18-2b 2) x4 1 DD1)原式原式=2(3+b)(3-b)2)原式原式=(x+1)(x+1)(x-1)因式分解的基本方法因式分解的基本方法2运用公式法运用公式法 把乘法公式反过来用把乘法公式反过来用,可以把符合公式可以把符合公式特点的多项式因式分解特点的多项式因式分解,这种方法叫公式法这种方法叫公式法. (1) 平方差公式:平方差公式: a2-b2=(a+b)(a-b) (2) 完全平方公式:完全平方公式:
展开阅读全文