带电粒子在圆磁场中的运动课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《带电粒子在圆磁场中的运动课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 带电 粒子 磁场 中的 运动 课件
- 资源描述:
-
1、例例1 1 电视机的显像管中,电子束的偏转是用磁偏转技电视机的显像管中,电子束的偏转是用磁偏转技术实现的。电子束经过电压为术实现的。电子束经过电压为U U的加速电场后,进入一的加速电场后,进入一圆形匀强磁场区,如图所示。磁场方向垂直于圆面。圆形匀强磁场区,如图所示。磁场方向垂直于圆面。磁场区的中心为磁场区的中心为O O,半径为,半径为r r。当不加磁场时,电子束。当不加磁场时,电子束将通过将通过O O点而打到屏幕的中心点而打到屏幕的中心M M点。为了让电子束射到点。为了让电子束射到屏幕边缘屏幕边缘P P,需要加磁场,使电子束偏转一已知角度,需要加磁场,使电子束偏转一已知角度,此时磁场的磁感应强
2、度此时磁场的磁感应强度B B应为多少?应为多少? 例例2 2:在圆形区域的匀强磁场的磁感应强度为在圆形区域的匀强磁场的磁感应强度为B B,一,一群速率不同的质子自群速率不同的质子自A A点沿半径方向射入磁场区域,点沿半径方向射入磁场区域,如图所示,已知该质子束中在磁场中发生偏转的最如图所示,已知该质子束中在磁场中发生偏转的最大角度为大角度为1061060 0,圆形磁场的区域的半径为,圆形磁场的区域的半径为R R,质子,质子的质量为的质量为m m,电量为,电量为e e,不计重力,则该质子束的速,不计重力,则该质子束的速率范围是多大?率范围是多大?34BeRvmO1O2O3O4“让圆动起来让圆动起
3、来”结论结论2:对准圆心射入,速度越大,偏转角和圆:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短。心角都越小,运动时间越短。例例3 3 在真空中,半径在真空中,半径r r3 310102 2 m m的圆形区域内的圆形区域内有匀强磁场,方向如图有匀强磁场,方向如图2 2所示,磁感应强度所示,磁感应强度B B0.2 0.2 T T,一个带正电的粒子以初速度,一个带正电的粒子以初速度v v0 01 110106 6 m/sm/s从磁从磁场边界上直径场边界上直径abab的一端的一端a a射入磁场,已知该粒子的比射入磁场,已知该粒子的比荷荷 q/mq/m 1 110108 8 C/kg C
4、/kg,不计粒子重力,不计粒子重力(1)(1)求粒子在磁场中做匀速圆周运动的半径;求粒子在磁场中做匀速圆周运动的半径;(2)(2)若要使粒子飞离磁场时有最大偏转角,求入射若要使粒子飞离磁场时有最大偏转角,求入射时时v v0 0与与abab的夹角的夹角及粒子的最大偏转角及粒子的最大偏转角(1)R5102 m.(2)37o 74o结论结论3 3:运动速度:运动速度v v相同相同, ,方向不同,弧长越长方向不同,弧长越长对应时间越长对应时间越长。( (直径对应的弧最长直径对应的弧最长) )222202212()(1)422m vrSre B 设设P(x,y)为磁场下边界上的一为磁场下边界上的一点,经
5、过该点的电子初速度与点,经过该点的电子初速度与x轴轴夹角为夹角为 ,则由图可知:,则由图可知:x = rsin , y = rrcos ,得得: x2 + (yr)2 = r2。 所以磁场区域的下边界也是半径为所以磁场区域的下边界也是半径为r,圆心为,圆心为(0,r)的的圆弧应是磁场区域的下边界。圆弧应是磁场区域的下边界。磁场上边界如图线磁场上边界如图线1所示。所示。 两边界之间图形的面积即为所求。两边界之间图形的面积即为所求。图中的阴影区域面图中的阴影区域面积,即为磁场区域面积:积,即为磁场区域面积: 所有电子的轨迹圆半径相等,且均过所有电子的轨迹圆半径相等,且均过O点。这些轨迹圆的圆心都在
6、以点。这些轨迹圆的圆心都在以O为圆为圆心,半径为心,半径为r的且位于第的且位于第象限的四分象限的四分之一圆周上,如图所示。之一圆周上,如图所示。 电子由电子由O点射入第点射入第象限做匀速象限做匀速圆周运动圆周运动2000vmvev Bm r=reB2220112()(1)()422mvSrreBmin 即所有出射点均在以坐标即所有出射点均在以坐标(0,r)为圆心的圆弧为圆心的圆弧abO上,显然,上,显然,磁场分布的最小面积磁场分布的最小面积应是实线应是实线1和圆弧和圆弧abO所围的面积,由几何所围的面积,由几何关系得关系得 由图可知,由图可知,a、b、c、d 等点就是各电等点就是各电子离开磁场
7、的出射点,均应满足方程子离开磁场的出射点,均应满足方程x2 + (ry)2=r2。结论结论1:对准圆心射入:对准圆心射入,必定沿着圆心射出必定沿着圆心射出带电粒子带电粒子在圆形磁场中运动在圆形磁场中运动的四个结论的四个结论结论结论3 3:运动半径相同:运动半径相同(v(v相同相同) )时,弧长越长对时,弧长越长对应时间越长应时间越长。结论结论2:对准圆心射入,速度越大,偏转角和圆:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短。心角都越小,运动时间越短。结论结论4 4:磁场圆的半径与轨迹圆的半径相同时:磁场圆的半径与轨迹圆的半径相同时, , “磁会聚磁会聚”与与“磁扩散磁扩散”Rr
8、r迁移与逆向、对称的物理思想!迁移与逆向、对称的物理思想!xyRO/Ov带点微粒发射带点微粒发射装置装置CPQr图图 (c)例例3可控热核聚变反应堆产生能的方式和可控热核聚变反应堆产生能的方式和太阳类似,因此,它被俗称为太阳类似,因此,它被俗称为“人造太阳人造太阳”热核反应的发生,需要几千万度以上的高温,热核反应的发生,需要几千万度以上的高温,然而反应中的大量带电粒子没有通常意义上然而反应中的大量带电粒子没有通常意义上的容器可装人类正在积极探索各种约束装置,的容器可装人类正在积极探索各种约束装置,磁约束托卡马克装置就是其中一种如图磁约束托卡马克装置就是其中一种如图15所示为该装置的简化模所示为
9、该装置的简化模型有一个圆环形区域,区域内有垂直纸面向里的匀强磁场,已知型有一个圆环形区域,区域内有垂直纸面向里的匀强磁场,已知其截面内半径为其截面内半径为R11.0 m,磁感应强度为,磁感应强度为B1.0 T,被约束粒子的被约束粒子的比荷为比荷为q/m4.0107 C/kg ,该带电粒子从中空区域与磁场交界面的该带电粒子从中空区域与磁场交界面的P P点以速度点以速度v v0 04.04.010107 7 m/sm/s沿环的半径方向射入磁场沿环的半径方向射入磁场( (不计带电粒不计带电粒子在运动过程中的相互作用,不计带电粒子的重力子在运动过程中的相互作用,不计带电粒子的重力) )(1)(1)为约
10、束该粒子不穿越磁场外边界,求磁场区域的最小外半径为约束该粒子不穿越磁场外边界,求磁场区域的最小外半径R R2 2(2)(2)若改变该粒子的入射速度若改变该粒子的入射速度v v,使,使v v v v0 0,求该粒子从求该粒子从P P点进入磁点进入磁场开始到第一次回到场开始到第一次回到P P点所需要的时间点所需要的时间t t. .33甲甲乙乙A带电粒子在磁场中飞行的时间不可能相同带电粒子在磁场中飞行的时间不可能相同B从从M点射入的带电粒子可能先飞出磁场点射入的带电粒子可能先飞出磁场C从从N点射入的带电粒子可能先飞出磁场点射入的带电粒子可能先飞出磁场D从从N点射入的带电粒子可能比点射入的带电粒子可能
11、比M点射入的点射入的带电粒子先飞出磁场带电粒子先飞出磁场 解析:解析:画轨迹草图如右图所示,容易得出画轨迹草图如右图所示,容易得出粒子在圆形磁场中的轨迹长度粒子在圆形磁场中的轨迹长度(或轨迹对应的或轨迹对应的圆心角圆心角)不会大于在正方形磁场中的,故不会大于在正方形磁场中的,故B正正确确答案:答案:B3如右图所示,纸面内有宽为如右图所示,纸面内有宽为L水平向右飞行的带电水平向右飞行的带电粒子流,粒子质量为粒子流,粒子质量为m,电荷量为,电荷量为q,速率为,速率为v0,不,不考虑粒子的重力及相互间的作用,要使粒子都汇聚到考虑粒子的重力及相互间的作用,要使粒子都汇聚到一点,可以在粒子流的右侧虚线框
展开阅读全文