固体物理第5章5.1布洛赫定理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《固体物理第5章5.1布洛赫定理课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 物理 5.1 布洛赫 定理 课件
- 资源描述:
-
1、第一节第一节 布洛赫定理布洛赫定理5.1.1 5.1.1 布洛赫定理布洛赫定理5.1.3 5.1.3 布里渊区布里渊区5.1.2 5.1.2 波矢的取值和范围波矢的取值和范围本节主要内容本节主要内容: :5.1 布洛赫定理5.1.1 布洛赫定理1.晶格的周期性势场 (3) (3)理想晶体中原子排列具有周期性,晶体内部的势场具理想晶体中原子排列具有周期性,晶体内部的势场具有周期性;有周期性; (1) (1)在晶体中每点势能为各个原子实在该点所产生的势能之在晶体中每点势能为各个原子实在该点所产生的势能之和;和; (2) (2)每一点势能主要决定于与核较近的几个原子实每一点势能主要决定于与核较近的几
2、个原子实( (因为势因为势能与距离成反比能与距离成反比) ); (4) (4)电子的影响:电子均匀分布于晶体中,其作用相当于在晶电子的影响:电子均匀分布于晶体中,其作用相当于在晶格势场中附加了一个均匀的势场,而不影响晶体势场的周期性。格势场中附加了一个均匀的势场,而不影响晶体势场的周期性。 ErVm 222 在一个具有晶格周期性的势场中运动的电子的波函在一个具有晶格周期性的势场中运动的电子的波函数的基本特点?数的基本特点?当势场具有晶格周期性时,波动方程的解具有如下性质:当势场具有晶格周期性时,波动方程的解具有如下性质: 周期场中运动的电子的能量周期场中运动的电子的能量E E(K K)和波函数
3、必须满)和波函数必须满足定态的薛定谔方程足定态的薛定谔方程 nRrVrV nR其中其中 为任意格点的位矢。为任意格点的位矢。其中其中 为电子波矢,为电子波矢, k332211anananRn 是格矢。是格矢。)()(rrrkkikuenkkuuRrr)(2. 布洛赫定理的物理意义一个具有晶格周期性的势场中运动的电子的波函数为:一个具有晶格周期性的势场中运动的电子的波函数为:一个自由电子的波函数一个自由电子的波函数 与一个具有晶体结构周期性函数与一个具有晶体结构周期性函数 的乘积。的乘积。rkie)(rku是按照晶格周期是按照晶格周期a a调幅的行波;调幅的行波;在物理上反应了晶体中的电子既有共
4、有化的倾向,又受到晶体在物理上反应了晶体中的电子既有共有化的倾向,又受到晶体结构周期性排列的限制;结构周期性排列的限制;只有当只有当 等于常数时,在周期场中运动的电子波函数才变等于常数时,在周期场中运动的电子波函数才变为自由电子的波函数;为自由电子的波函数;布洛赫函数是比自由电子波函数更接近真实情况的波函数。布洛赫函数是比自由电子波函数更接近真实情况的波函数。)(rku 在晶格周期性势场中运动的电子的波函数是按晶格周期调在晶格周期性势场中运动的电子的波函数是按晶格周期调幅的平面波。具有此形式的波函数称为幅的平面波。具有此形式的波函数称为布洛赫波函数布洛赫波函数。3.证明布洛赫定理(1)(1)引
5、入平移对称算符引入平移对称算符)(nRT(2)(2)说明说明: :0, HT(3)(3) TnRkinR e)( 根据布洛赫定理波函数写成如下形式:根据布洛赫定理波函数写成如下形式:)()(rrrkkikuenkkuuRrr)( 由于晶格的周期性,晶体中的等效势场由于晶格的周期性,晶体中的等效势场V(r)具有具有晶格的周期性。晶格的周期性。)()(nVVRrrkjirzyxkjiRr)()()(nznynxnRzRyRx)()()()()()(222222222222222222222rRRRRrrnznynxnzyxzyxzyx在直角坐标系中在直角坐标系中则哈密顿函数也为晶格的周期性函数则哈
6、密顿函数也为晶格的周期性函数)()(2)(22rrrVmH)()()()(22222222nnznynxVRxRxRxmRr )()()(222nnnHVmRrRrRr为了根据哈密顿函数具有晶格的平移对称性研究波函为了根据哈密顿函数具有晶格的平移对称性研究波函数的特点,引入平移对称操作算符数的特点,引入平移对称操作算符)(nRT任意一个函数任意一个函数f(r)经过平移算符作用后变为经过平移算符作用后变为)()()(nnffTRrrR现将平移对称操作算符作用在薛定谔方程左边现将平移对称操作算符作用在薛定谔方程左边)()()()()()()()(rRrRrRrrrRnnnTHHHT0, HT 由于
7、对易的算符有共同的本征函数,所以如果波函数由于对易的算符有共同的本征函数,所以如果波函数 是是 的本征函数,那么的本征函数,那么 也一定是算符也一定是算符 的本征函数。的本征函数。)(r H)(r )(nRT)()()()(rHrrVrf,可以是 )(nRT对应的本征值的特点是什么?对应的本征值的特点是什么?)()()()()(rRRrrRnnnT由由本征值本征值(Rn)必须满足等式必须满足等式)()()(rRRrnn根据平移特点根据平移特点)()(332211aaannnTRTn)()()(332211aaanTnTnT321)()()(321nnnTTTaaa可以得到可以得到)()()()
8、()()()()(321321raaarRrRnnnnnT321)()()()(321nnnnaaaR即即设晶体在设晶体在a1、 a2、a3三个方向各有个三个方向各有个N1、N2、N3个个原胞,由周期性边界条件原胞,由周期性边界条件)()(11arrN得到得到)()()()()()(111111rarraraNNTN由上式可以得出由上式可以得出1)(11Naiae)(1a解为解为令令ka1,代入代入1)(11Naiae)(1a11112 lNakl为整数为整数取取1111bkNl满足上式,得到满足上式,得到1111)(1abNliea同理可以得到同理可以得到2222bkNl2222)(2aba
9、Nlie3333bkNl3333)(3abaNlie令令331221111bbbkNlNlNl321)()()()(321nnnnaaaR由由nineRkR)(晶体中电子波函数满足的方程是晶体中电子波函数满足的方程是)()(rRrRknine可以得到可以得到 具有波矢的意义具有波矢的意义331221111bbbkNlNlNl当波矢当波矢K增加个倒格矢增加个倒格矢332211bbbKhhhh平面波平面波rKkr)()(hie也满足晶体中电子的波函数所满足的方程。也满足晶体中电子的波函数所满足的方程。所以,电子的波函数为平面波的线性叠加所以,电子的波函数为平面波的线性叠加rKrkrKkKkKkrh
10、hihhiihhkeaeea)()()()()()(rKkrKkihhueah)()(rrrkkikue)()(rRrknkuu结论:晶体中电子的波函数是按晶格周期调幅的平面波。结论:晶体中电子的波函数是按晶格周期调幅的平面波。 可以认为电子在整个晶体中自由运动。布洛赫函数的平面可以认为电子在整个晶体中自由运动。布洛赫函数的平面波因子描述晶体中电子的共有化运动,而周期函数的因子描述电波因子描述晶体中电子的共有化运动,而周期函数的因子描述电子在原胞中运动,这取决于原胞中电子的势场。子在原胞中运动,这取决于原胞中电子的势场。个个原原胞胞,、方方向向各各有有、设设晶晶体体在在321321NNNaaa
11、 )()()()()()(332211aNrraNrraNrrkkkkkk 由周期性边界条件由周期性边界条件5.1.2 的取值和范围k1e jjaNk i)()(11raNrkk )(e)(1111ruaNrkaNrkik )(ee11rukrkiaNki )(rk 332211bbb 333222111NblNblNblk ,baijjj 2 jjjlN (其中(其中lj为任意整数为任意整数) ),jjjNl 只能取一些分立的值。只能取一些分立的值。)()(rrhKkk 可以证明可以证明是倒格矢。是倒格矢。nK整整数数时时,当当 jj ,nKkkk 换成换成相当于波矢相当于波矢khKk 态和
展开阅读全文