回归分析小结课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《回归分析小结课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归 分析 小结 课件
- 资源描述:
-
1、两个变量的关系两个变量的关系不相关不相关相关关系相关关系函数关系函数关系线性相关线性相关非线性相关非线性相关函数关系中的两个变量间是一种确定性关系。函数关系中的两个变量间是一种确定性关系。相关关系是一种非确定性关系。相关关系是一种非确定性关系。 比数学3中“回归”增加的内容数学数学统计统计1. 画散点图画散点图2. 了解最小二乘法了解最小二乘法的思想的思想3. 求回归直线方程求回归直线方程ybxa4. 用回归直线方程用回归直线方程解决应用问题解决应用问题选修1-2统计案例5. 引入线性回归模型引入线性回归模型ybxae6. 了解模型中随机误差项了解模型中随机误差项e产产生的原因生的原因7. 了
2、解相关指数了解相关指数 R2 和模型拟和模型拟合的效果之间的关系合的效果之间的关系8. 了解残差图的作用了解残差图的作用9. 利用线性回归模型解决一类利用线性回归模型解决一类非线性回归问题非线性回归问题10. 正确理解分析方法与结果正确理解分析方法与结果相关系数相关系数r12211()().()()niiinniiiixxyyxxyy0.751, 1, 0.75, 0 25,0.25,rrr 当, 表明两个变量正相关很强;当表明两个变量负相关很强;当.表明两个变量相关性较弱。1221niiiniix ynxybxnx相关关系的测度相关关系的测度(相关系数取值及其意义)1、线性回归模型:、线性回
3、归模型:y=bx+a+e其中其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。2、数据点和它在回归直线上相应位置的差异、数据点和它在回归直线上相应位置的差异 是随机误差的效应,称是随机误差的效应,称 为为残差残差。)iiyy(iiieyy=3、对每名女大学生计算这个差异,然后分别将所得、对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号表示为:的值平方后加起来,用数学符号表示为: 称为称为残差平方和残差平方和,它代表了随机误差的效应。它代表了随机误差的效应。21()niiiyy 在研究两个变量间的关系时,首先要根据散点图在研究两个变量间的关系时,首
4、先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。型来拟合数据。4、残差分析与残差图的定义:、残差分析与残差图的定义: 然后,我们可以通过残差然后,我们可以通过残差 来判来判断模型拟合的效果,判断原始数据中是否存在可断模型拟合的效果,判断原始数据中是否存在可疑数据,疑数据,这方面的分析工作称为残差分析这方面的分析工作称为残差分析。12,ne ee 我们可以利用图形来分析残差特性,作图时纵坐标我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或为残差,横坐标可以选为样本编号,或身高数据,或体重
5、估计值等,这样作出的图形称为体重估计值等,这样作出的图形称为残差图残差图。 我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,来刻画回归的效果,其计算公式是其计算公式是:222112211()()1()()nniiiiinniiiiyyyyRyyyy1=)()(+)()(1=21=21=21=2niiniiniiniiiyyyyyyyy_-残差平方和残差平方和 21()niiiyy总偏差平方和总偏差平方和 1=2)(niiyy_-1=2)(niiyy -回归平方和回归平方和 =+解析变量和随机误差的总效应(总偏差平方和)解析变量和随机误差的总效应(总偏差平方和)=解析变量的效应(回归平
6、方和)解析变量的效应(回归平方和)+随机误差的效应(残差平方和)随机误差的效应(残差平方和)2221121()()()nniiiiiniiyyyyRyy总偏差平方和 残差平方和回归平方和总偏差平方和总偏差平方和显然,显然,R2的值越大,说明残差平方和越小,也就是说模型拟合的值越大,说明残差平方和越小,也就是说模型拟合效果越好。效果越好。R2越接近越接近1,表示回归的效果越好(因为,表示回归的效果越好(因为R2越接近越接近1,表示解析,表示解析变量和预报变量的线性相关性越强)。变量和预报变量的线性相关性越强)。 如果某组数据可能采取几种不同回归方程进行回归分析,如果某组数据可能采取几种不同回归方
7、程进行回归分析,则可以通过比较则可以通过比较R R2 2的值来做出选择,即的值来做出选择,即选取选取R R2 2较大的模型作为较大的模型作为这组数据的模型这组数据的模型。总的来说:总的来说:相关指数相关指数R2是度量模型拟合效果的一种指标。是度量模型拟合效果的一种指标。在线性模型中,它在线性模型中,它代表自变量刻画预报变量的能力代表自变量刻画预报变量的能力。 我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,来刻画回归的效果,其计算公式是其计算公式是:222112211()()1()()nniiiiinniiiiyyyyRyyyy一般地,建立回归模型的基本步骤为:一般地,建立回归模型的
展开阅读全文