书签 分享 收藏 举报 版权申诉 / 138
上传文档赚钱

类型初三数学圆的复习课件人教版.ppt.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2511367
  • 上传时间:2022-04-28
  • 格式:PPT
  • 页数:138
  • 大小:3.10MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《初三数学圆的复习课件人教版.ppt.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初三 数学 复习 课件 人教版 ppt 下载 _其它资料_数学_初中
    资源描述:

    1、知识体系知识体系圆圆基本性质基本性质直线与圆的直线与圆的位置关系位置关系圆与圆的圆与圆的位置关系位置关系概概念念对对称称性性垂垂径径定定理理圆心角、圆心角、弧、弦之弧、弦之间的关系间的关系定理定理圆周角与圆周角与圆心角的圆心角的关系关系切切线线的的性性质质切切线线的的判判定定切切线线的的作作图图弧长、扇形面积和圆锥弧长、扇形面积和圆锥的侧面积相关计算的侧面积相关计算正多边形正多边形和圆和圆位位置置分分类类性性质质公公切切线线的的作作图图关关系系定定理理有有关关计计算算圆的有关性质圆的有关性质圆的定义(运动观点)l在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图

    2、形叫做圆。l固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作O,读作“圆O”圆的定义辨析 篮球是圆吗? 圆必须在一个平面内 以3cm为半径画圆,能画多少个? 以点O为圆心画圆,能画多少个? 由此,你发现半径和圆心分别有什么作用? 半径确定圆的大小;圆心确定圆的位置 圆是“圆周”还是“圆面”? 圆是一条封闭曲线 圆周上的点与圆心有什么关系?圆的定义(集合观点) 圆是到定点的距离等于定长的点的集合。 圆上各点到定点(圆心)的距离都等于定长(半径); 到定点的距离等于定长的点都在圆上。 一个圆把平面内的所有点分成了多少类? 你能模仿圆的集合定义思想,说说什么是圆的内部和圆的外部吗?点与

    3、圆的位置关系 圆是到定点(圆心)的距离等于定长(半径)的点的集合。 圆的内部是到圆心的距离小于半径的点的集合。 圆的外部是到圆心的距离大于半径的点的集合。 由此,你发现点与圆的位置关系是由什么来决定的呢?如果圆的半径为r,点到圆心的距离为d,则: 点在圆上 d=r 点在圆内 dr与圆有关的概念 弦和直径 什么是弦?什么是直径? 直径是弦吗?弦是直径吗? 弧与半圆 什么是圆弧(弧)?怎样表示? 弧分成哪几类? 半圆是弧吗?弧是半圆吗? 弓形是什么? 同心圆、同圆、等圆和等弧 怎样的两个圆叫同心圆? 怎样的两个圆叫等圆? 同圆和等圆有什么性质? 什么叫等弧?点的轨迹 把符合某一条件的所有的点所组成

    4、的图形,叫做符合这个条件的点的轨迹。 图形上的任何一点都符合条件; 符合条件的任何一点都在图形上。 圆是什么点的轨迹? 垂直平分线是什么点的轨迹? 角平分线是什么点的轨迹?圆的有关性质圆的有关性质过三点的圆过三点的圆:确定一条直线的条件是什么?:确定一条直线的条件是什么?:是否也存在由几个点确定一个圆呢?:是否也存在由几个点确定一个圆呢?:经过一个点,能作出多少个圆?:经过一个点,能作出多少个圆? 经过两个点,如何作圆,能作多少个?经过两个点,如何作圆,能作多少个? 经过三个点,如何作圆,能作多少个?经过三个点,如何作圆,能作多少个?OCAB经过三角形的三个顶点的圆叫做三角形的经过三角形的三个

    5、顶点的圆叫做三角形的外接圆外接圆,外接圆的圆心叫做三角形的外接圆的圆心叫做三角形的外心外心,三角形叫做圆的三角形叫做圆的内接三角形内接三角形。问题问题1:如何作三角形的外接圆?:如何作三角形的外接圆?如何找三角形的外心?如何找三角形的外心?问题问题2:三角形的外心一定:三角形的外心一定 在三角形内吗?在三角形内吗?OCABC90OCABABC是锐角三角形是锐角三角形OCABABC是钝角三角形是钝角三角形垂直于弦的直径及其推及其推论论想一想想一想:将一个圆沿着任一条直径对折,两:将一个圆沿着任一条直径对折,两侧半圆会有什么关系?侧半圆会有什么关系?性质:性质:圆是圆是轴对称图形轴对称图形,任何一

    6、条,任何一条直径直径所在所在的直线都是它的的直线都是它的对称轴对称轴。OCDABOCDAB观察右图,有什么等量关系?观察右图,有什么等量关系?OBCDAEAO=BO=CO=DO,弧AD弧BC,弧AC弧BD。AO=BO=CO=DO,弧AD弧BC=弧AC弧BD。AO=BO=CO=DO,弧AD弧BD,弧AC弧BC, AEBE 。OBCDAE垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。判断下列图形,能否使用垂径定理?判断下列图形,能否使用垂径定理?OCDBAOCDBAOCDBAOCDE注意:定理中的两个条件注意:定理中的两个条件(直径,垂直于弦)缺一不(直径,垂直于弦)缺一不可!可!OABE若圆

    7、心到弦的距离用若圆心到弦的距离用d表示,表示,半径用半径用r表示,弦长用表示,弦长用a表示,表示,这三者之间有怎样的关系?这三者之间有怎样的关系?2222adrOABCDAC、BD有什么关系?有什么关系?ACBD依然成依然成立吗立吗?OABCDOABCDFEEA_, EC=_。FDFBOABCD:_ AC=BD.OA=OBOABCD:_ AC=BD.OC=OD 如图,P为 O的弦BA延长线上一点,PAAB2,PO5,求 O的半径。MAPBO关于弦的问题,常常需关于弦的问题,常常需要要过圆心作弦的垂线段过圆心作弦的垂线段,这是一条非常重要的这是一条非常重要的辅辅助线助线。圆心到弦的距离、半径、圆

    8、心到弦的距离、半径、弦长弦长构成构成直角三角形直角三角形,便将问题转化为直角三便将问题转化为直角三角形的问题。角形的问题。画图叙述垂径定理,并说出画图叙述垂径定理,并说出定理的题设和结论。定理的题设和结论。题设题设结论结论直线直线CD经过圆心经过圆心O直线直线CD垂直弦垂直弦AB直线直线CD平分弦平分弦AB直线直线CD平分弧平分弧ACB直线直线CD平分弧平分弧AB想一想:如果将题设和想一想:如果将题设和结论中的结论中的5 5个条件适当互个条件适当互换,情况会怎样?换,情况会怎样?OBCDAE (1)平分弦平分弦(不是直径)(不是直径)的直径的直径垂直垂直于弦于弦,并且,并且平分弦所对的两条弧平

    9、分弦所对的两条弧;(2 2)弦的垂直平分线弦的垂直平分线经过圆心经过圆心,并且,并且平分弦所对的两条弧平分弦所对的两条弧;(3 3)平分弦所对的一条弧的直径平分弦所对的一条弧的直径,垂垂直平分弦直平分弦并且并且平分弦所对的另一条弧平分弦所对的另一条弧。OBCDAE如图如图,CD为为 O的直径的直径,ABCD,EFCD,你能得到什么结论?你能得到什么结论?圆的两条圆的两条平行弦平行弦所夹的弧相等所夹的弧相等。FOBAECD圆心角、弧、弦、弦心距之间的关系圆的性质 圆是轴对称图形,每一条直径所在的直线都是对称轴。 圆是以圆心为对称中心的中心对称图形。 圆还具有旋转不变性,即圆绕圆心旋转任意一个角度

    10、,都能与原来的图形重合。:顶点在圆心的角。:顶点在圆心的角。(如:(如:AOB)C:从圆心到弦的距离。:从圆心到弦的距离。(如:(如:OC)OAB如图如图,AOBAOB,OCAB,OCAB。猜想:猜想:弧弧AB与弧与弧AB,AB与与AB,OC与OC之间的关系,并证明你的猜想。之间的关系,并证明你的猜想。定理定理 相等的圆心角相等的圆心角所对的所对的弧弧相等,相等,所对的所对的弦弦相等,所对的弦的相等,所对的弦的弦心距弦心距相等。相等。在同圆或等圆中,在同圆或等圆中,OABCABC圆心角所对的弧相等,圆心角所对的弧相等, 圆心角圆心角所对的弦相等,所对的弦相等, 圆心角圆心角所对弦的弦心距相等。

    11、所对弦的弦心距相等。在同圆或等圆中,在同圆或等圆中,如果两个圆心角、两条弧、如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有两条弦或两条弦的弦心距中有一组量相等,那么它们所对应一组量相等,那么它们所对应的其余各组量都分别相等的其余各组量都分别相等。在同圆或等圆中在同圆或等圆中( (前提前提) )圆心角相等圆心角相等(条件)(条件)1圆心角圆心角1弧弧OABCDn圆心角圆心角n弧弧圆心角的度数和它所对的弧的度数相等。圆周角圆周角OBACDF圆心角:如圆心角:如BOA圆内角:如圆内角:如BCA圆周角:如圆周角:如BDA圆外角:如圆外角:如BFA角的顶点角的顶点在圆心在圆心角的顶点在圆周上角的顶点

    12、在圆周上是否顶点在圆周上是否顶点在圆周上的角就是圆周角呢的角就是圆周角呢? ?OBACOBCAOCAB画图:同一条弧所对的圆周角和圆心角之间可能出现哪几种不同的位置关系?OCABOCABOCAB回顾:圆心角等于它所对的弧的度数的一半。回顾:圆心角等于它所对的弧的度数的一半。猜想:圆周角和圆心角都是与圆有关的角,猜想:圆周角和圆心角都是与圆有关的角,它们之间有什么关系?它们之间有什么关系?OCABOCABOCAB化化归归化化归归分类讨论分类讨论完全归纳法完全归纳法OCAB1、已知已知AOB75,求求: ACBOCAB2、已知已知AOB120,求求: ACBODBAC3、已知已知ACD30,求求:

    13、 AOBOBAC4、已知已知AOB110,求求: ACB推论 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 也可以理解为:一条弧所对的圆心角是它所对的圆周角的二倍;圆周角的度数等于它所对的弧的度数的一半。 弧相等,圆周角是否相等?反过来呢? 什么时候圆周角是直角?反过来呢? 直角三角形斜边中线有什么性质?反过来呢?OBADEC如图,比较如图,比较ACBACB、ADBADB、AEBAEB的大小的大小同弧所对的圆周角相等如图,如果弧如图,如果弧ABAB弧弧CDCD,那么,那么EE和和FF是什么关系?反过来呢?是什么关系?反过来呢?DCEBFAO等弧所对的圆周角相等;在同圆中,相等的圆周角所对

    14、的弧也相等DCEO1BFAO2如图,如图,OO1 1和和OO2 2是等圆,是等圆,如果弧如果弧ABAB弧弧CDCD,那么,那么EE和和FF是什么关系?反过来是什么关系?反过来呢?呢?等圆也成立推论推论1 1同弧或等弧所对的圆周角相等;同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧相等。同圆或等圆中,相等的圆周角所对的弧相等。思考:思考:1 1、“同圆或等圆同圆或等圆”的条件能否去掉?的条件能否去掉?2 2、判断正误:在同圆或等圆中,如果两个、判断正误:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距、两个圆心角、两条弧、两条弦、两条弦心距、两个圆周角中有一组量相等,

    15、那么它们所对应的圆周角中有一组量相等,那么它们所对应的其余各组量也相等。其余各组量也相等。OBACDOCBAFED关于等积式的证明 如图,已知如图,已知ABAB是是OO的弦,半径的弦,半径OPABOPAB,弦,弦PDPD交交ABAB于于C C,求证:,求证:PAPA2 2PCPCPDPDCDPBAO经验:经验:证明等积式,通常利证明等积式,通常利用相似;用相似;找角相等,要有找同找角相等,要有找同弧或等弧所对的圆周角弧或等弧所对的圆周角的意识;的意识;OBADEC推论推论2 2半圆(或直径)所对的圆周角是半圆(或直径)所对的圆周角是9090;9090的圆周角所对的弦是直径。的圆周角所对的弦是直

    16、径。推论推论3 3如果三角形一边上的中线等于这条边如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。的一半,那么这个三角形是直角三角形。 什么时候圆周角是直角?什么时候圆周角是直角?反过来呢?反过来呢? 直角三角形斜边中线有什直角三角形斜边中线有什么性质?反过来呢?么性质?反过来呢?OACBOACB直线和圆的位置关系重点内容直线和圆的位置关系位置关系相交相切相离公共点个数d与r的关系公共点名称直线名称2个1个无drdrdr交点切点割线切线有且仅有有且仅有注意:注意:“”,即即“等价于等价于”熟记直线和圆的位置关系d与r的关系 位置关系 交点个数图形lOlO2个1个无drdrd

    17、r相交相离相切熟记lO切线的判定重点内容 判断一条直线是不是圆的切线 使用定义:直线和圆有唯一的公共点 圆心到直线的距离d等于半径r时,直线和圆相切说说看:以上两种判断办法是否方便应用呢? 操作:画操作:画OO,在,在OO上上任取一点任取一点A A,连结,连结OAOA,过过A A点作直线点作直线lOAlOA 直线l l是否与 O O相切呢? 从作图过程看,这条切线l l满足哪些条件? l l 经过半径外端 l l垂直于这条半径穷则思变切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线。 已知:直线AB经过 O上的点C,并且OAOB,CACB。求证:直线AB是 O的切线。OCBA

    18、 已知: OAOB5厘米,AB8厘米, O的直径6厘米。求证:AB与 O相切。以上两题辅助线的作法是否相同?你分析出了什么结论?辅助线技巧 证明一条直线是圆的切线,常常需要作辅助线。 若直线过圆上某一点,则连结圆心和公共点,再证明直线与半径垂直 若直线与圆的公共点没有确定,则过圆心向直线作垂线,再证明圆心到直线的距离等于半径。相切。直线证:小圆与厘米为半径作小圆,求为圆心,以厘米,厘米,圆内弦的半径为如图,AB4O38AB8OOBA练兵切线判定的方法 利用切线定义 利用圆心到直线的距离等于半径 利用切线判断定理 辅助线技巧:若直线过圆上某一点,则连结圆心和公共点,再证明直线与半径垂直若直线与圆

    19、的公共点没有确定,则过圆心向直线作垂线,再证明圆心到直线的距离等于半径。Review切线的性质重点内容 切线判定:直线l l:过半径外端垂直于半径 切线性质:切线l l,A为切点:OAl l理解记忆类比猜想切线的性质定理:圆的切线垂直于经过切点的半径。推论:推论:1 1、经过圆心且垂直于切线的直线必经过切点、经过圆心且垂直于切线的直线必经过切点2 2、经过切点且垂直于切线的直线必经过圆心、经过切点且垂直于切线的直线必经过圆心切线判定与性质典型例题 已知:AB是 O的直径,BC是 O的切线,切点为B,OC平行于弦AD。求证:DC是 O的切线。体会规律 如图,在以O为圆心的两个同心圆中,大圆的弦A

    20、B和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切。DCOBAFDCBAEO切线性质定理的推广 性质定理:圆的切线垂直于经过切点的半径 推1:经过圆心且垂直于切线的直线必经过切点 推2:经过切点且垂直于切线的直线必经过圆心浓缩提炼你能用一个定理把圆的切线的性质及它的两个推论概括出来吗?如果一条直线具备下列三个条件中如果一条直线具备下列三个条件中的任意两个,就可以推出第三个的任意两个,就可以推出第三个:(1 1)垂直于切线;()垂直于切线;(2 2)过切点;)过切点;(3 3)过圆心。)过圆心。切线的判定和性质 判定切线的三种方法: 和圆只有一个公共点的直线是圆的切线 和圆心的距离等于半

    21、径的直线是圆的切线 过半径外端且和半径垂直的直线是圆的切线Review定义定义本质一样本质一样表达不同表达不同定理定理过圆心过圆心过切点过切点垂直于切线,随便知垂直于切线,随便知两个就可推出第三个两个就可推出第三个 切线的主要性质: 切线和圆只有一个公共点 切线和圆心的距离等于半径 切线垂直于过切点的半径 经过圆心垂直于切线的直线必过切点 经过切点垂直于切线的直线必过圆心 主要辅助线: 利用切线性质时,常作过切点的半径 证明直线是圆的切线时,分清什么时候“连结”,什么时候“作垂线”三角形的内切圆重点内容OABC如何在一个三角形中剪下一个圆,使得该如何在一个三角形中剪下一个圆,使得该圆的面积尽可

    22、能的大?圆的面积尽可能的大?思考OABC和三角形各边都相切的圆叫做和三角形各边都相切的圆叫做三角形的内三角形的内切圆切圆;内切圆的圆心叫做;内切圆的圆心叫做三角形的内心三角形的内心;这个三角形叫做这个三角形叫做圆的外切三角形圆的外切三角形。三角形的内心是三角形内角平分线的交点。三角形的内心是三角形的内心是否也有在三角形否也有在三角形内、三角形外或内、三角形外或三角形上三种不三角形上三种不同情况。同情况。记忆 在ABC中,ABC50,ACB75,求BOC的度数。(1)点O是三角形的内心(2)点O是三角形的外心 ABC中,E是内心,A的平分线和ABC的外接圆相交于点D。求证:DEDB。ABCODA

    23、BCE练习关于三角形内心的辅助线:关于三角形内心的辅助线: 连结内心和三角形的顶点,连结内心和三角形的顶点,该线平分三角形的这一内角。该线平分三角形的这一内角。垂心重心外心内心交点性质位置三条高线三条高线的交点的交点三条角平三条角平分线的交分线的交点点三边垂直三边垂直平分线的平分线的交点交点三条中线三条中线的交点的交点在形内、在形内、形外或直形外或直角顶点角顶点在形内、在形内、形外或斜形外或斜边中点边中点在形内在形内在形内在形内到三角形到三角形各顶点距各顶点距离相等离相等到三角形到三角形三边距离三边距离相等相等把中线分把中线分成了成了2:2:1 1两部分两部分已知ABC的内切圆半径为r,求证:

    24、 ABC的面积SABCsr。(s为ABC的半周长)圆的内接四边形定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。CBADOEFDB180AC180EABBCDFCBBAD对角外角内对角又一种重要的辅助线FEDCBAO2O1如图, O1和 O2都经过A、B两点,经过A点的直线CD与 O1交于点C,与 O2交于点D,经过B点的直线EF与 O1交于点E,与 O2交于点F。求证:CEDF有两个圆的题目常用的一种辅助线:作公共弦。此图形是一个考试热门图形。思考:若此题条件和结论不变,只是不给出图形,此题还能这样证明吗?ECBAO2O1FD切线长定理切线长的定义以及定理切线与切线长的区别

    25、: 切线是直线,不能度量。 切线长是线段的长,这条线段的两个端点分别是圆外的一点和切点,可以度量。PAPA、PBPB分别切分别切OO于于A A、B BPA = PBPA = PBOPA=OPBOPA=OPB切线长定理: 题设:从圆外一点引圆 的两条切线 结论:切线长相等, 圆心和这一点的连线平分两条切线的夹角 几何表述:PBAODCPBAO 如图,PA、PB是 O的两条切线,A、B是切点,直线OP交 O于点D,交AB于点C。 写出图中所有的垂直关系 写出图中所有的全等三角形 写出图中所有的相似三角形 写出图中所有的等腰三角形 若PA4cm,PD2cm,求半径OA的长 若 O的半径为3cm,点P

    26、和圆心O的距离为6cm,求切线长及这两条切线的夹角度数PABOCPO平分平分AOBPO垂直平分垂直平分ABPO平分弧平分弧ABPAPBPO平分平分APB圆的外切四边形的重要性质 四边形ABCD的边AB、BC、CD、DA和 O分别相交相切于点L、M、N、P。观察图并结合切线长定理,你发现了什么结论?并证明之。CBADPLMNO圆的外切四边形的两组对边的和相等圆的外切四边形的两组对边的和相等ABCDADBC弦切角OCBADE弦切角的定义 弦切角:顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角。 要点: 顶点在圆上 一边和圆相交 一边和圆相切判断下列各图形中的判断下列各图形中的AA是不是是不

    27、是弦切角,并说明理由。弦切角,并说明理由。COABOCABOCABOCAB还记得什么是分类讨论吗?还记得什么是化归吗?还记得什么是完全归纳法吗?OCBADE弦切角等于它所夹的弦切角等于它所夹的弧所对的圆周角。弧所对的圆周角。如图,如图,DE切切O于于A,AB,AC是是O的的弦,若弧弦,若弧AB弧弧AC,那么,那么DAB和和EAC是否相等?为什么?是否相等?为什么?COADEB若两弦切角所夹的弧若两弦切角所夹的弧相等,则这两个弦切相等,则这两个弦切角也相等。角也相等。 等腰梯形各边都与 O相切, O的直径为6cm,等腰梯形的腰等于8cm,则梯形的面积为_。圆的外切四边形的两组对边的和相等圆的外切

    28、四边形的两组对边的和相等ABCDADBC868CBADPLMNO与圆有关的比例线段 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。POCDABPAPB=PCPD 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。PT2= PAPBAOPBT 如图,CD是弦,AB是直径,CDAB,垂足为P。求证:PC2PAPBACDBPO你能用你能用两种两种不同的原理不同的原理证明吗?证明吗? 相交弦定理推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。PC2= PAPB 如图,PAB和PCD是 O的两条割线。求证:PAPBPCPD你能

    29、用你能用多种多种不同的原理不同的原理证明吗?证明吗? 切割线定理推论(割线定理)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。PAPBPCPDAOPBCDACOPDB(1)经过经过O内或外一点内或外一点P作两条直线交作两条直线交 O于于A,B,C,D四点四点,得到了如图所示的六种不同情得到了如图所示的六种不同情况况.在六种情况下在六种情况下,PA,PB,PC,PD四条线段在四条线段在数量上满足的关系式可用同一个式子表示数量上满足的关系式可用同一个式子表示.请请先写出这个式子,然后只就图先写出这个式子,然后只就图给予证明;给予证明;POBACD(P)OBACDPOBA

    30、CDACOPD(B)ACOP(D)(B)POBACD(2)已知已知O的半径为一定值的半径为一定值r,若点,若点P是不是不在在O上的一个定点,请你过上的一个定点,请你过P任作一直线任作一直线交交O于不重合的两点于不重合的两点E、F,PEPF的值的值是否为定值?为什么?由此你发现了什么是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来。结论?请你把这一结论用文字叙述出来。结论:过不在圆上的一个定点结论:过不在圆上的一个定点P的任何一的任何一条直线与圆相交,则这点到直线与圆的交条直线与圆相交,则这点到直线与圆的交点的两条线段的乘积为定值。(点的两条线段的乘积为定值。(等于点等于点

    31、P到圆心的距离与半径的平方差的绝对值到圆心的距离与半径的平方差的绝对值)2222OPrPFPE rOPPFPE或或运动观点看本质 切线长定理 相交弦定理 相交弦定理推论 切割线定理 割线定理本质一样圆幂定理圆和圆的位置关系两个圆没有公共点,两个圆没有公共点,并且每个圆上的点都并且每个圆上的点都在另一个圆的外部。在另一个圆的外部。两个圆没有公共点,两个圆没有公共点,并且每个圆上的点都并且每个圆上的点都在另一个圆的内部。在另一个圆的内部。dR+rdR-rdRrO1O2dRrO1O2两个圆有唯一公共点,两个圆有唯一公共点,并且除这公共点外,并且除这公共点外,每个圆上的点都在另每个圆上的点都在另一个圆

    32、的外部。一个圆的外部。两个圆有唯一公共点,两个圆有唯一公共点,并且除这公共点外,每并且除这公共点外,每个圆上的点都在另一个个圆上的点都在另一个圆的内部。圆的内部。d=R+rd=R-rdRrO1O2dRrO1O2两个圆有两两个圆有两个公共点。个公共点。R-rdr)内含内含相交相交外离外离Rr外切外切Rr内切内切相切两圆、相交两圆的性质 对称性 单一个圆是轴对称图象,那么由两个圆组成的图形是否有轴对称性质呢?有若,说出对称轴,若没有,说明理由 由上述性质,你可以推导出相切两圆、相交两圆分别有什么性质吗?说明理由。APBAPB如果两圆相切,那么如果两圆相切,那么切点在连心线上切点在连心线上。相切两圆

    33、的性质生活中的公切线公切线的相关概念 公切线:和两圆都相切的直线。O1O2 两圆在公切线的同旁外公切线O1O2 两圆在公切线的两旁内公切线 思考: 两个圆是否一定有公切线? 若有,那么会有多少条公切线?位置关系图形外公切线数内公切线数公切线总数外离224外切213相交202内切101内含000公切线数量&两圆位置关系公切线的性质 切线切线类比联想类比联想公切线公切线什么是切线长?什么是公切线的长?什么是切线长?什么是公切线的长?切线长有什么定理?你猜想公切线的长切线长有什么定理?你猜想公切线的长相应有什么性质?写出结论并证明。相应有什么性质?写出结论并证明。重点:关于公切线长的计算 公切线的长

    34、的计算 思想:构造直角三角形,利用勾股定理 计算式:21222122)()(RRdABRRdAB内公切线长:外公切线长: 联想: 通常构造直角三角形的知识点:垂径定理、切线长定理、公切线 思考: 两圆内切时,内(外)公切线的长怎样? 两圆外切时,内公切线的长怎样?此时,外公切线长是两圆直径的比例中项,怎样证明?辅助线:构造Rt 要做一个如图那样的V形架,将两个钢管托起,已知钢管的外径分别为200mm和80mm,求V形角的度数。 从边长分别为a、b(ab)的矩形纸片上剪下一个最大的圆,然后再从剩下的余料中又剪下一个尽可能大的圆,求第二次剪下的圆的直径。计算题:两圆外切,通常辅助线的添法是连结两圆

    35、圆心,平移外公切线,构成直角三角形,利用勾股定理计算。MabCBADO1O2ba辅助线:作公切线 如图, O1和 O2内切于P,大圆的弦AB交小圆于C、D。求证:APCBPD。 如图, O1和 O2外切于A,BC是 O1和 O2的公切线,B、C为切点。求证:ABACDCO1PO2ABMNBO1O2ACQ重要结论:切点三角形 如图, O1和 O2外切于点A、BC为两圆外公切线,B、C为切点,AD为 O1直径,求证:ACBD。BO1O2ACD重要结论:切点三角形 如图, O1和 O2外切于A,两圆的外公切线BC切 O1于点B,切 O2于C,连结AB、AC;CA的延长线交 O1于D。求证:(1)AB

    36、AC; (2)BD2DADC。DO2O1CBAO1AO2B相交两圆的相交两圆的连心线连心线垂直平分垂直平分公共弦公共弦。相交两圆的性质 O1、 O2的半径分别为4cm、3cm。两圆交于A、B两点,AB4.8cm,求O1O2的长。1 1、在圆和圆、在圆和圆的位置关系中的位置关系中经常要解直角经常要解直角三角形。三角形。2 2、注意几何、注意几何的分类讨论题的分类讨论题CBAO1O2CBAO2O1正多边形和圆正多边形和圆圆的内接正n边形&圆的外切正n边形正多边形:正多边形:各边相等各边相等,各角也相等各角也相等的多边形叫做正多边形。的多边形叫做正多边形。正正n n边形:边形:如果一个正多边形有如果

    37、一个正多边形有n n条边,那么这个正多边形叫条边,那么这个正多边形叫做正做正n n边形。边形。三条边相等,三个角三条边相等,三个角也相等(也相等(6060度)度)四条边都相等,四个四条边都相等,四个角也相等(角也相等(9090度)度)类比联想 怎样找圆的内接正三角怎样找圆的内接正三角形?怎样找圆的外切正形?怎样找圆的外切正三角形?三角形?怎样找圆的内接正方怎样找圆的内接正方形?怎样找圆的外切正形?怎样找圆的外切正方形?方形?怎样找圆的内接正怎样找圆的内接正n n边边形?怎样找圆的外切正形?怎样找圆的外切正n n边形?边形?EFGHABCDABCD把圆分成n(n3)等份:依次连结各分点所得的多边

    38、形是这个圆的内接正多边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正多边形。正多边形和圆正多边形和圆正n边形的外接圆&正n边形的内切圆类比联想 正三角形 有没有外接圆和内切圆? 怎样作出这两个圆? 这两个圆有什么位置关系? 正方形 有没有外接圆和内切圆? 怎样作出这两个圆? 这两个圆有什么位置关系?那么,正那么,正n n边形呢?边形呢?定理定理任何正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆。正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距。正多边形各边所对的外接圆的圆心角叫做正多边形的

    39、中心角。正n边形的每个中心角都等于360/n。正多边形的性质EDCBOAFEDCBOA正多边形是轴对称图形,正n边形有n条对称轴。若n为偶数,则其为中心对称图形。正多边形的性质 各边相等,各角相等 圆的内接正n边形的各个顶点把圆分成n等分 圆的外切正n边形的各边与圆的n个切点把圆分成n等分 每个正多边形都有一个内切圆和外接圆,这两个圆是同心圆,圆心就是正多边形的中心 正多边形都是轴对称图形,如果边数是偶数那么它还是中心对称图形 正n边形的中心角和它的每个外角都等于360/n,每个内角都等于(n-2)180/n 边数相同的正多边形相似,周长比、边长比、半径比、边心距比、对应对角线比都等于相似比,

    40、面积比等于相似比平方求证:各边相等的圆内接多边形是正多边形。求证:各角相等的圆外切多边形是正多边形。思考:各边相等的圆外切多边形是否是正多边形?各角相等的圆内接多边形是否是正多边形?正多边形的有关计算 什么是正多边形的中心、半径、边心距、中心角? 正n边形的内角和、外角和分别是多少?它的每一个内角、外角、中心角分别是多少? 作一个正五边形,作出它的半径、中心角、边心距,观察它们之间有何关系? 若正多边形的边数为n时,它的边长、半径、中心角、边心距之间的关系如何?怎样做有关的计算?正正n n边形的半径和边心距把正边形的半径和边心距把正n n边形边形分成分成2n2n个全等的直角三角形。个全等的直角

    41、三角形。面积;周长;边心距;边长n180cosn180sinnR 21Sn1802nRsinPn180Rcosrn1802Rsina2nnnnnnrP已知正六边形已知正六边形ABCDEF的半径为的半径为R,求这个正六边形的边长求这个正六边形的边长a6、周长、周长P6和和面积面积S6。已知圆的半径为已知圆的半径为R,求它的内接正三角形、,求它的内接正三角形、内接正方形的边长、边心距和面积。内接正方形的边长、边心距和面积。RaR2aR3a643画正多边形 思想:画半径为R的正n边形,只要把半径为R的圆n等分。 用尺规等分圆正四边形正八边形正六边形正三角形正十二边形圆周长、弧长圆周长、弧长圆周长圆周

    42、长C与半径R之间的关系:C2R弧长计算公式180Rnl 公式中公式中n n和和180180都不要带单位都不要带单位“度度” 圆心角的单位必须化为圆心角的单位必须化为“度度” 题中没有标明精确度,结果用题中没有标明精确度,结果用表示表示皮带轮模型 如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m。(1)求皮带长(保留三个有效数字);(2)如果小轮每分钟750转,求大轮每分钟约多少转?如果两个轮是等圆呢?如果两个轮是等圆呢?圆、扇形、弓形的面积 一条弧和经过这条弧的端点的两条半径所组成的图形 回忆弧长计算公式的推导过程,你能否相应地推出扇形面积的计算公式呢?2360RnS扇

    43、形 观察扇形面积公式,你发现它和弧长公式之间有什么关系?lRS21扇形 已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积。 把上题中的正三角形改为正方形,结果会怎样? 猜想:正五边形、正六边形时又会怎样? 用文字表达你得到的结论。 求不规则图形面积时,要认真观察图形,准确分解与组合,化归为常见的基本图形。 弓形:由弦及其所对的弧组成的图形S弓形弓形=S扇形扇形-SAOBS弓形弓形=S扇形扇形+SAOBS弓形弓形=S半圆半圆 水平放着的圆柱形水管的截面半径是0.6m,其中水面高是0.3m。求截面上有水的弓形的面积(精确到0.01m2) 如图, O的半径为R,直径ABCD,以B为圆心,

    44、以BC为半径作弧CED。求弧CED与弧CAD围成的新月形ACED的面积S。 如图, O1与 O2外切于C,AB为两圆公切线,A、B为切点,若 O1、 O2半径为3R、R。求:(1)AB的长;(2)阴影部分面积。 如图,已知A为 O外一点,连结OA交 O于P,AB为 O的切线,B为切点,AP5cm,AB cm,则劣弧BP与AB、AP围成的阴影部分面积为多少?35 若把两个圆心角相等的扇形看作有一条曲边的三角形,则这两个扇形“相似”,由类比法可以得出一些有趣的性质: 相似扇形的弧长比等于半径比 相似扇形非曲边上的高之比及中线之比都等于扇形半径之比 相似扇形的外接圆半径之比和内切圆半径之比都等于扇形

    45、半径之比 相似扇形周长之比等于扇形半径之比 相似扇形面积之比等于扇形半径之比的平分 扇形曲边三角形 扇环? 由此猜想扇环还可以怎样计算呢? 有能力的话,你能推导吗? 看看课本181页11题hllS)(2121扇环圆柱和圆锥侧面展开图侧面展开图思考题 在一个圆锥形的雪糕壳的表面上A处有一只蚂蚁,它发现雪糕壳表明上的B处有一滴残留的雪糕,那么请你为这只蚂蚁设计一条最短的路线,使它最快爬到B处。 把一个圆柱侧面展开,是什么图形? 把一个圆锥侧面展开,是什么图形?圆柱与圆锥的有关概念 圆柱 圆柱的高 圆柱的运动定义 圆柱的轴 圆柱的母线 圆锥 圆锥的高 圆锥的运动定义 圆锥的轴 圆锥的母线O圆柱的基本性质 两个底面是两个等圆 两个底面平行 母线平行与轴 轴通过上、下底面的圆心 母线长都相等并等于高 侧面展开图是矩形矩形的一边长等于圆柱的高,即母线长另一边长是底面圆的周长圆柱的侧面积等于底面圆的周长乘以圆柱的高圆锥的基本性质 底面一个圆 轴通过底面的圆心 轴垂直于底面 母线长都相等 侧面展开图是扇形扇形的半径是圆锥的母线长弧长是圆锥底面圆的周长圆锥的侧面积等于扇形的面积提高练习 从一个底面半径为40cm,高60cm的圆柱中挖去一个以圆柱上底为底,下底圆心为顶点的圆锥,如图,得到一个几何体,求这个几何体的表面积。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:初三数学圆的复习课件人教版.ppt.ppt
    链接地址:https://www.163wenku.com/p-2511367.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库