几何概型(优秀课件).ppt.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《几何概型(优秀课件).ppt.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何 优秀 课件 ppt
- 资源描述:
-
1、3.3.1几何概型 下图是卧室和书房地板的示意图,图中下图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,小猫分别在每一块方砖除颜色外完全相同,小猫分别在卧室和书房中自由地走来走去,并随意停留卧室和书房中自由地走来走去,并随意停留在某块方砖上。在哪个房间里,小猫停留在在某块方砖上。在哪个房间里,小猫停留在黑砖上的概率大?黑砖上的概率大?卧卧 室室书书 房房创设情境3:问题情境问题情境n古典概型的两个基本特点古典概型的两个基本特点: :(1 1)所有的基本事件只有有限个)所有的基本事件只有有限个; ;(2 2)每个基本事件发生都是等可能的)每个基本事件发生都是等可能的. . 那么对于有
2、无限多个试验结果的情况那么对于有无限多个试验结果的情况相应的概率应如果求呢相应的概率应如果求呢? ?思考:上述问题的概率与什么有关?思考:上述问题的概率与什么有关?这是古典概型问题吗?这是古典概型问题吗?几何图形1 1. .取一根长度为取一根长度为30cm30cm的绳子,拉直后在任意位的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于置剪断,那么剪得两段的长度都不小于10cm10cm的的概率有多大?概率有多大?从从30cm30cm的绳子上的任意一点剪断的绳子上的任意一点剪断. .基本事件基本事件: :问题问题3 31 1A A) )事事件件A A发发生生的的概概率率P P( (解:记解:
3、记“剪得两段绳长都不小于剪得两段绳长都不小于10cm10cm”为事件为事件A. A. 把绳子三等分把绳子三等分, ,于是当剪断位置处在中间一段上时于是当剪断位置处在中间一段上时, ,事件事件A A发生发生. .由于中间一段的长度等于绳长的由于中间一段的长度等于绳长的1/3.1/3.2.上图中有两个转盘上图中有两个转盘,甲乙两人玩转盘游戏规甲乙两人玩转盘游戏规定当指针指向定当指针指向B区域时区域时,甲获胜甲获胜,否则乙获胜否则乙获胜.在两种情况下分别求在两种情况下分别求甲获胜的概率甲获胜的概率是多少是多少? ?问题问题2153分析:甲获胜的概率只与分析:甲获胜的概率只与B B所在扇形区所在扇形区
4、域的圆弧长度有关,而与域的圆弧长度有关,而与B B所在区域的所在区域的位置无关,不管这些区域是否相邻位置无关,不管这些区域是否相邻 对于一个随机试验对于一个随机试验, ,我们将每个基本事件理解为从某我们将每个基本事件理解为从某个特定的几何区域内随机地个特定的几何区域内随机地取一点取一点, ,该区域中的每一个点该区域中的每一个点被取到的机会都一样被取到的机会都一样, ,而一个随机事件的发生则理解为恰而一个随机事件的发生则理解为恰好取到上述区域内的好取到上述区域内的某个指定区域中的点某个指定区域中的点. .这里的区域可这里的区域可以是以是线段、平面图形、立体图形线段、平面图形、立体图形等等. .:
5、 :(1)(1)基本事件有无限多个基本事件有无限多个;(2)2)基本事件发生是等可能的基本事件发生是等可能的.形成概念如果每个事件发生的概率只与构如果每个事件发生的概率只与构成该事件区域的长度(面积或体成该事件区域的长度(面积或体积)成比例,则称这样的概率模积)成比例,则称这样的概率模型为型为几何概型几何概型(Geometric models of probability). .D D的的测测度度d d的的测测度度P P( (A A) ) 一般地,在几何区域D中随机地取一点,记“该点落在其内部一个区域d内”为事件A,则事件A发生的概率:注:(2)D(2)D的测度不为的测度不为0,0,当当DD分
6、别是分别是线段、平面图形、立体图形线段、平面图形、立体图形时时, ,相应的相应的“测度测度”分别是分别是长度、面积和体积长度、面积和体积. .(1 1)古典概型与几何概型的区别在于:)古典概型与几何概型的区别在于:几何概型是无限多个等可能事件的情况,几何概型是无限多个等可能事件的情况,而古典概型中的等可能事件只有有限多个;而古典概型中的等可能事件只有有限多个;(3 3)区域应指)区域应指“开区域开区域” ” ,不包含边界点;在区域,不包含边界点;在区域 内随机取点是指:该点落在内随机取点是指:该点落在 内任何一处都是等可能的,内任何一处都是等可能的,落在任何部分的可能性只与该部分的测度成正比而
7、与其性落在任何部分的可能性只与该部分的测度成正比而与其性状位置无关状位置无关DD 1 1. .射箭比赛的箭靶是涂有五个彩色的分环射箭比赛的箭靶是涂有五个彩色的分环. .从外向从外向内为白色、黑色、蓝色、红色,靶心是金色内为白色、黑色、蓝色、红色,靶心是金色, ,金色金色靶心叫靶心叫“黄心黄心”. .奥运会的比赛靶面直径为奥运会的比赛靶面直径为122cm,122cm,靶心直径为靶心直径为12.2cm.12.2cm.运动员在运动员在70m70m外射箭外射箭, ,假设假设每每箭都能中靶箭都能中靶, ,且射中靶面内任一点都是等可能的且射中靶面内任一点都是等可能的, ,那那么射中黄心的概率是多少么射中黄
8、心的概率是多少? ?练习练习0 0. .0 01 11 12 22 24 41 11 12 2. .2 24 41 1( (B B) )事事件件B B发发生生的的概概率率为为P P2 22 2事事件件B B发发生生. .的的黄黄心心内内时时, ,c cm m1 12 2. .2 2 4 41 1积积为为而而当当中中靶靶点点落落在在面面的的大大圆圆内内, ,c cm m1 12 22 2 4 41 1面面积积为为由由于于中中靶靶点点随随机机落落在在件件B B, ,. .记记“射射中中黄黄心心”为为事事2 22 22 22 2解例例1.1.某人午休醒来,发觉表停了,他打开收音机某人午休醒来,发觉表
展开阅读全文