分类加法计数原理与分步乘法计数原理优质课分析课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《分类加法计数原理与分步乘法计数原理优质课分析课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分类 加法 计数 原理 分步 乘法 优质课 分析 课件
- 资源描述:
-
1、1.1分类计数原理分类计数原理与分步计数原理分步计数原理 问题剖析问题剖析 问题问题1要完成什么事情要完成什么事情完成这个事情有完成这个事情有几几类类方案方案每类每类方案能否独立方案能否独立完成这件事情完成这件事情每类每类方案中分别有方案中分别有几种不同的方法几种不同的方法完成这件事情共有完成这件事情共有多少种不同的方法多少种不同的方法两类两类能能26种种 10种种26+10=36种种或或一个一个阿拉伯数字给教室里的座位编号,总共阿拉伯数字给教室里的座位编号,总共能够能够编出编出多少种不同的号码?多少种不同的号码?请思考请思考:问题问题1:用:用一个一个大写的英文字母大写的英文字母用用一个一个
2、大写的英文字母或大写的英文字母或一个一个阿拉伯阿拉伯数字给教室里的座位编号数字给教室里的座位编号假如你从假如你从平川平川到到兰州,兰州,请问你共有多少种不同的走法?请问你共有多少种不同的走法?客车每天有客车每天有3 3个班次,火车每天有个班次,火车每天有2 2个班次,个班次,可以坐直达客车可以坐直达客车或或直达火车,直达火车,客车客车1 1客车客车2 2客车客车3 3火车火车1 1火车火车2 2平川平川兰州兰州完成完成从平川到兰州从平川到兰州这件事有这件事有2类方案,类方案,所以,所以,从平川到兰州共有从平川到兰州共有3+ 2= 5种方法种方法.问题问题1:1:你能否发现这两个问题有什么共同特
3、征?你能否发现这两个问题有什么共同特征?1 1、都是要完成一件事、都是要完成一件事2 2、用任何一类方法都能直接完成这件事、用任何一类方法都能直接完成这件事3 3、都是采用加法运算、都是采用加法运算完成一件事有完成一件事有两类不同的方案两类不同的方案,在在第第1 1类类方案中有方案中有m种不同的方法,种不同的方法,在在第第2 2类类方案中有方案中有n种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有 N = = m + + n种不同的方法。种不同的方法。例例1.在填写高考志愿表时在填写高考志愿表时,一名高中毕业生了解到一名高中毕业生了解到A,B两所大学各有一些自己感兴趣的强项专业
4、两所大学各有一些自己感兴趣的强项专业,具具体情况如下体情况如下:A大学大学B大学大学生物学生物学化学化学医学医学物理学物理学工程学工程学数学数学会计学会计学信息技术学信息技术学法学法学如果这名同学只能选一个专业如果这名同学只能选一个专业,那么他共有多少种那么他共有多少种选择呢选择呢?变式:变式:在填写高考志愿表时在填写高考志愿表时,一名高中毕业生了解一名高中毕业生了解到到,A,B,C三所大学各有一些自己感兴趣的强项专三所大学各有一些自己感兴趣的强项专业业,具体情况如下具体情况如下:A大学大学B大学大学生物学生物学化学化学医学医学物理学物理学工程学工程学数学数学会计学会计学信息技术学信息技术学法
5、学法学如果这名同学只能选一个专业如果这名同学只能选一个专业,那么他共有多少种那么他共有多少种选择呢选择呢?C大学大学机械制造机械制造建筑学建筑学广告学广告学汉语言文学汉语言文学韩语韩语N=5+4+5=14(种种)如果完成一件事情有如果完成一件事情有3类不同方案,在第类不同方案,在第1类方类方案中有案中有m1种不同的方法,在第种不同的方法,在第2类方案中有类方案中有m2种不同的方法,在第种不同的方法,在第3类方案中有类方案中有m3种不同的种不同的方法,那么完成这件事情有方法,那么完成这件事情有 种不同的方法种不同的方法N=m1+m2+m3探究探究1 如果完成一件事情有如果完成一件事情有n类不同方
6、案,在每一类类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?中都有若干种不同方法,那么应当如何计数呢? 完成一件事有完成一件事有 n 类不同的方案类不同的方案,在在第第1 1类类方案中有方案中有 m1 种不同的方法,种不同的方法,在在第第2 2类类方案中有方案中有 m2 种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有 种不同的方法。种不同的方法。 在在第第n类类方案中有方案中有mn种不同的方法,种不同的方法,nmmmN 21引例引例1 1:用一个大写的英文字母用一个大写的英文字母或或一个阿拉伯一个阿拉伯数字给教室里的座位编号,总共能够编出多少数字给教室里的座位编
7、号,总共能够编出多少种不同的号码?种不同的号码? 变换:变换:用前用前6 6个大写英文字母个大写英文字母和和1 19 9九个阿拉伯九个阿拉伯数字,以数字,以A A1 1,A A2 2,B B1 1,B B2 2,的方式给教室里的方式给教室里的座位编号,总共能编出多少种不同的号码?的座位编号,总共能编出多少种不同的号码? 完成完成给教室里的座位编号编号给教室里的座位编号编号这件事这件事 分两分两步完成:步完成:第第1步步:先确定一个英文字母:先确定一个英文字母第第2步,步,后确定一个阿拉伯数字后确定一个阿拉伯数字字母字母数字数字 得到的号码得到的号码123456789A1A2A3A4A5A6A7
8、A8A9ABB1B2B3B4B5B6B7B8B9CC1C2C3C4C5C6C7C8C9DD1D2D3D4D5D6D7D8D9EE1E2E3E4E5E6E7E8E9FF1F2F3F4F5F6F7F8F9变换:变换:用前用前6 6个大写英文字母个大写英文字母和和1 19 9九个阿拉九个阿拉伯数字,以伯数字,以A A1 1,A A2 2,B B1 1,B B2 2,的方式给教的方式给教室里的座位编号,总共能编出多少种不同的号码?室里的座位编号,总共能编出多少种不同的号码? 完成完成给教室里的座位编号给教室里的座位编号这件事需要这件事需要两个步骤两个步骤,第第1 1步,步,确定一个英文字母,有确定一个
9、英文字母,有6 6种种不同方法;不同方法;第第2 2步,步,确定确定一个阿拉伯数字,有一个阿拉伯数字,有9 9种种不同方法;不同方法; 所以,编号共有所以,编号共有6 69=549=54种方法种方法. .例例2、设某班有男生设某班有男生30名,女生名,女生24名。现要从中选出名。现要从中选出男、女生各一名代表班级参加比赛,共有多少种不男、女生各一名代表班级参加比赛,共有多少种不同的选法?同的选法?例例3、长征的部分电话号码是长征的部分电话号码是0943665,后面每后面每个数字来自个数字来自09这这10个数个数,问可以产生多少个不同的电问可以产生多少个不同的电话号码话号码?变式变式: 若要求最
10、后若要求最后4个数字不重复个数字不重复,则又有多少种不同则又有多少种不同的电话号码的电话号码?094366510 10 10 10=104分析分析:分析分析:=504010 987 完成一件事有完成一件事有两类两类不同方案不同方案, ,在第在第1 1类方案中有类方案中有m种不种不同的方法同的方法, ,在第在第2 2类类方案中有方案中有n种不同的种不同的方法方法. .那么完成这件那么完成这件事共有事共有 种不同的方法种不同的方法. .N= =m+ +n分类加法计数原理:分类加法计数原理: 完成一件事需完成一件事需要要两个步骤两个步骤, ,做第做第1 1步有步有m种不同的方法种不同的方法, ,做第
11、做第2 2步有步有n种不同种不同的方法的方法. .那么完成这那么完成这件事共有件事共有 N= =mn分步乘法计数原理分步乘法计数原理:种不同的方法种不同的方法. .那么完成这件事共有那么完成这件事共有种不同的方法种不同的方法。nmmmN21完成一件事需要完成一件事需要n个个步骤步骤,做做第第1 1步步有有m1 种不同的方法,种不同的方法,做做第第2 2步步有有m2种不同的方法,种不同的方法, 做做第第n步步有有mn种不同的方法,种不同的方法,分类加法计数原理分类加法计数原理分步乘法计数原理分步乘法计数原理相同点相同点不同点不同点注意点注意点用来计算用来计算“完成一件事完成一件事”的方法种数的方
12、法种数每类每类方案中的每一方案中的每一种方法都能种方法都能_ _ 完成这件事完成这件事每步每步_才才算完成这件事情算完成这件事情(每步中的每一种(每步中的每一种方法方法不能独立不能独立完成完成这件事)这件事)类类类类相加相加步步步步相乘相乘分类分类完成完成分步分步完成完成解:从书架上任取解:从书架上任取1 1本书,本书,例例3 3 书架上的第书架上的第1 1层放着层放着4 4本不同的计算机书,第本不同的计算机书,第2 2层放层放着着3 3本不同的文艺书,第本不同的文艺书,第3 3层放着层放着2 2本不同的体育书。本不同的体育书。第第1 1类方法是从第类方法是从第1 1层取层取1 1本计算机书,
13、有本计算机书,有4 4种方法;种方法; 第第2 2类方法是从第类方法是从第2 2层取层取1 1本文艺书,有本文艺书,有3 3种方法;种方法; 第第3 3类方法是从第类方法是从第3 3层取层取1 1本体育书,有本体育书,有2 2种方法。种方法。 根据分类加法计数原理,不同取法的种数是:根据分类加法计数原理,不同取法的种数是:N=4+3+2=9. N=4+3+2=9. (1 1)从书架上任取)从书架上任取1 1本书,有几种不同的取法?本书,有几种不同的取法?有三类方法:有三类方法:(2 2)从书架上的第)从书架上的第1 1、2 2、3 3层各取层各取1 1本书,有几种不同本书,有几种不同的取法?的
14、取法?例例3 3 书架上的第书架上的第1 1层放着层放着4 4本不同的计算机书,第本不同的计算机书,第2 2层放层放着着3 3本不同的文艺书,第本不同的文艺书,第3 3层放着层放着2 2本不同的体育书。本不同的体育书。(1 1)从书架上任取)从书架上任取1 1本书,有几种不同的取法?本书,有几种不同的取法?解:从书架的第解:从书架的第1 1,2 2,3 3层各取层各取1 1本书,本书,第第1 1步:从第步:从第1 1层取层取1 1本计算机书,有本计算机书,有4 4种方法;种方法; 第第2 2步:从第步:从第2 2层取层取1 1本文艺书,有本文艺书,有3 3种方法;种方法; 第第3 3步:从第步
15、:从第3 3层取层取1 1本体育书,有本体育书,有2 2种方法。种方法。 根据分步计数原理,不同取法的种数是:根据分步计数原理,不同取法的种数是:N=4N=43 32=24. 2=24. 可以分成三个步骤完成:可以分成三个步骤完成:例例4 4 要从甲、乙、丙要从甲、乙、丙、3 3幅不同的画中选出幅不同的画中选出2 2幅,幅,分别挂在左、右两边墙上的指定位置,问共有分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?多少种不同的挂法?甲甲乙乙丙丙解:从解:从3 3幅画中选出幅画中选出2 2幅分别挂在左、右两边墙幅分别挂在左、右两边墙上,可以分两个步骤完成:上,可以分两个步骤完成:第一步,从
展开阅读全文