优选用频率估计概率ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《优选用频率估计概率ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优选 频率 估计 概率 ppt 课件
- 资源描述:
-
1、优选用频率估计概率ppt探究:投掷硬币时,国徽朝上的可能性有多大?探究:投掷硬币时,国徽朝上的可能性有多大?在同样条件下,随机事件可能发生,也可在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能不发生,那么它发生的可能性有多大呢?这是我们下面要讨论的问题。这是我们下面要讨论的问题。抛掷次数(n)2048404012000 300002400072088正面朝上数正面朝上数(m)106120486019149841201236124频率(m/n)0.5180.5060.5010.49960.5005 0.5011历史上曾有人作过抛掷硬币的大量重复实验,历史上曾有人作过抛
2、掷硬币的大量重复实验,结果如下表所示结果如下表所示抛掷次数n频率m/n0.512048404012000240003000072088实验结论:当抛硬币的次数很多时当抛硬币的次数很多时,出现下面的频率值是出现下面的频率值是稳定的稳定的,接近于常数接近于常数0.5,在它附近摆动在它附近摆动. 我们知道我们知道, ,当抛掷一枚硬币时当抛掷一枚硬币时, ,要么出现正面要么出现正面, ,要么出现要么出现反面反面, ,它们是随机的它们是随机的. .通过上面的试验通过上面的试验, ,我们发现在大量试验中出我们发现在大量试验中出现正现正面的可能为面的可能为0.5,0.5,那么出现反面的可能为多少呢那么出现反
3、面的可能为多少呢? ? 这就是为什么我们在抛一次硬币时这就是为什么我们在抛一次硬币时, ,说出现正面的说出现正面的可能为可能为0.5,0.5,出现反面的可能为出现反面的可能为0.5.0.5.出现反面的可能也为出现反面的可能也为0.50.5 随机事件在一次试验中是否随机事件在一次试验中是否发生虽然不能事先确定,但是在发生虽然不能事先确定,但是在大量重复大量重复试验的情况下,它的发试验的情况下,它的发生呈现出一定的生呈现出一定的规律性规律性出现的出现的频率值接近于频率值接近于常数常数. .某批乒乓球产品质量检查结果表:某批乒乓球产品质量检查结果表: 当抽查的球数很多时,抽到优等品的频率当抽查的球数
4、很多时,抽到优等品的频率 接近于常数接近于常数0.95,在它附近摆动。,在它附近摆动。nm0.9510.9540.940.970.920.9优等品频率优等品频率200010005002001005019029544701949245优等品数优等品数nmnm抽取球数抽取球数 很多很多常数常数某种油菜籽在相同条件下的发芽试验结果某种油菜籽在相同条件下的发芽试验结果表:表: 当试验的油菜籽的粒数很多时,油菜籽发芽当试验的油菜籽的粒数很多时,油菜籽发芽的频率的频率 接近于常数接近于常数0.9,在它附近摆动。,在它附近摆动。nm很多很多 常数常数事件事件 的概率的定义的概率的定义: : A 一般地,在一
5、般地,在大量重复大量重复进行同一试进行同一试验时,事件验时,事件 发生的频率发生的频率 (n(n为实验为实验的次数的次数,m,m是事件发生的频数是事件发生的频数) )总是接总是接近于某个近于某个常数常数,在它附近摆动,这时,在它附近摆动,这时就把这个常数叫做事件就把这个常数叫做事件 的的概率概率,记,记做做 pAPnmAA由定义可知由定义可知: (1)求一个事件的概率的基本方法是通)求一个事件的概率的基本方法是通过大量的重复试验;过大量的重复试验; (3)概率是频率的)概率是频率的稳定值稳定值,而频率是概,而频率是概率的率的近似值近似值; (4)概率反映了随机事件发生的)概率反映了随机事件发生
6、的可能性可能性的大小;的大小; (5)必然事件的概率为)必然事件的概率为1,不可能事件的,不可能事件的概率为概率为0因此因此 10AP (2)只有当频率在某个常数附近摆动时,)只有当频率在某个常数附近摆动时,这个常数才叫做事件这个常数才叫做事件A 的概率;的概率;可以看到事件发生的可可以看到事件发生的可能性越大能性越大概率就越接近概率就越接近1;反之反之, 事件发生的可事件发生的可能性越小能性越小概率就越接近概率就越接近0例:对一批衬衫进行抽查,结果如下表:例:对一批衬衫进行抽查,结果如下表:抽取抽取件数件数n 50 100 200 500 800 1000优等优等品件品件数数m 42 88
7、176 445 724 901优等优等品频品频率率m/n0.840.880.880.890.9010.905求抽取一件衬衫是优等品的概率约是多少?求抽取一件衬衫是优等品的概率约是多少?抽取衬衫抽取衬衫2000件,约有优质品几件?件,约有优质品几件?某射手进行射击,结果如下表所示:某射手进行射击,结果如下表所示:射击次射击次数数n 击中靶击中靶心次数心次数m 击中靶击中靶心频率心频率m/n例例填表填表(1)这个射手射击一次,击中靶心的概率是这个射手射击一次,击中靶心的概率是多少?多少?.(2)这射手射击这射手射击1600次,击中靶心的次数是次,击中靶心的次数是。8000.650.580.520.
8、510.55估计移植成活率估计移植成活率由下表可以发现,幼树移植成活的频率在由下表可以发现,幼树移植成活的频率在左右摆动,左右摆动,并且随着移植棵数越来越大,这种规律愈加明显并且随着移植棵数越来越大,这种规律愈加明显. .所以估计幼树移植成活的概率为所以估计幼树移植成活的概率为0.90.9移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率0.8( )nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897由下表可
9、以发现,幼树移植成活的频率在由下表可以发现,幼树移植成活的频率在左右摆动,左右摆动,并且随着移植棵数越来越大,这种规律愈加明显并且随着移植棵数越来越大,这种规律愈加明显. .所以估计幼树移植成活的概率为所以估计幼树移植成活的概率为0.90.9移植总数(移植总数(n)成活数(成活数(m)108成活的频率成活的频率0.8( )nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.8971.1.林业部门种植了该幼树林业部门种植了该幼树1000
10、1000棵棵, ,估计能成活估计能成活_棵棵. . 2. 2.我们学校需种植这样的树苗我们学校需种植这样的树苗500500棵来绿化校园棵来绿化校园, ,则至少则至少向林业部门购买约向林业部门购买约_棵棵. .900556估计移植成活率估计移植成活率共同练习共同练习51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率( )损坏柑橘质量(损坏柑橘质量(m)/千克千克柑橘总质量(柑橘总质量(n)/千克千克nm完成下表完成下表, ,0.1010.097
11、0.0970.1030.1010.0980.0990.103某水果公司以某水果公司以2 2元元/ /千克的成本新进了千克的成本新进了10 00010 000千克柑橘千克柑橘, ,如果公如果公司希望这些柑橘能够获得利润司希望这些柑橘能够获得利润5 0005 000元元, ,那么在出售柑橘那么在出售柑橘( (已去掉损已去掉损坏的柑橘坏的柑橘) )时时, ,每千克大约定价为多少元比较合适每千克大约定价为多少元比较合适? ?利用你得到的结论解答下列问题利用你得到的结论解答下列问题: :51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.
12、151500.10510.51000.1105.5050柑橘损坏的频率(柑橘损坏的频率( )损坏柑橘质量(损坏柑橘质量(m)/千克千克柑橘总质量(柑橘总质量(n)/千克千克nm0.1010.0970.0970.1030.1010.0980.0990.103 从表可以看出,柑橘损坏的频率在常数从表可以看出,柑橘损坏的频率在常数_左右摆动,并且随统计左右摆动,并且随统计量的增加这种规律逐渐量的增加这种规律逐渐_,那么可以把柑橘损坏的概率估计为这个,那么可以把柑橘损坏的概率估计为这个常数如果估计这个概率为常数如果估计这个概率为0.1,则柑橘完好的概率为,则柑橘完好的概率为_思思 考考0.1稳定稳定.
13、千克元/22. 29 . 029000100002设每千克柑橘的销价为设每千克柑橘的销价为x元,则应有(元,则应有(x2.22)9 000=5 000解得解得 x2.8因此,出售柑橘时每千克大约定价为因此,出售柑橘时每千克大约定价为2.8元可获利润元可获利润5 000元元 根据估计的概率可以知道,在根据估计的概率可以知道,在10 000千克柑橘中完好柑橘的质量为千克柑橘中完好柑橘的质量为 10 0000.99 000千克,完好柑橘的实际成本为千克,完好柑橘的实际成本为根据频率稳定性定理,在要求精确度不是很高的情况下,不妨根据频率稳定性定理,在要求精确度不是很高的情况下,不妨用表中试验次数最多一
展开阅读全文