书签 分享 收藏 举报 版权申诉 / 28
上传文档赚钱

类型整式的乘除复习精品课件.pptx

  • 上传人(卖家):三亚风情
  • 文档编号:2460675
  • 上传时间:2022-04-20
  • 格式:PPTX
  • 页数:28
  • 大小:423.06KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《整式的乘除复习精品课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    整式 乘除 复习 精品 课件
    资源描述:

    1、小结与复习小结与复习(一)知识构架(一)知识构架整式整式单项式单项式多项式多项式整式运算整式运算整式加减整式加减整式乘法整式乘法整式除法整式除法公式公式1、同底数幂的乘法、同底数幂的乘法法则:法则:同底数幂相乘,底数不变,指数相加。同底数幂相乘,底数不变,指数相加。数学符号表示:数学符号表示:(其中(其中m、n为正整数)为正整数)nmnmaaa(二)整式的乘法(二)整式的乘法练习:判断下列各式是否正确。练习:判断下列各式是否正确。6623222844333)()()()(2,2xxxxxmmmbbbaaa2、幂的乘方、幂的乘方法则:法则:幂的乘方,底数不变,指数相乘。幂的乘方,底数不变,指数相

    2、乘。数学符号表示:数学符号表示:mnnmaa)((其中(其中m、n为正整数)为正整数)练习:判断下列各式是否正确。练习:判断下列各式是否正确。2244241222443243284444)()()( ,)()(,)(mmmnnaaaxxbbbaaamnppnmaa)((其中(其中m、n、P为正整数)为正整数)3、积的乘方、积的乘方法则:法则:积的乘方,等于把积的每一个因式分别乘方,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。再把所得的幂相乘。符号表示:符号表示:)()(),( ,)(为正整数其中为正整数其中ncbaabcnbaabnnnnnnn练习:计算下列各式。练习:计算下列各

    3、式。32332324)( ,)2( ,)21( ,)2(baxybaxyz幂运算性质逆用幂运算性质逆用例例.已知已知 ,求,求 的值。的值。710, 510nmnm 3210逆用逆用“积的乘方积的乘方”、“幂的乘方幂的乘方”:mmmbaab)(m是正整数是正整数)mnnmaa)(m,n都是正整数都是正整数)4.单项式与单项式相乘的法则:单项式与单项式相乘的法则: 单项式与单项式相乘,把它们单项式与单项式相乘,把它们的的系数、相同字母系数、相同字母分别相乘,对于分别相乘,对于只在一个单项式里含有的字母,则只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。连同它的指数作为积的一个因式。

    4、法则:法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+b)( m+n)=am+an+bm+bn5 .多项式与多项式相乘:多项式与多项式相乘:=am+an+bm+bn配套练习配套练习例例.先化简,再求值:先化简,再求值:整式运算整式运算yxyxxyxyyxx232223)()(其中其中 。21, 1yx 1先化简,后求值先化简,后求值:3x(-4x3y2)2-(2x2y)35xy 其中其中 x=1, y=2 .2. 己知己知x+5y=6 , 求求 x2+5xy+30y 的值。的值。1282188404858163:474747473646yxyx

    5、yxxyyxyxx原式解36)5(630630)5(65:yxyxyyxxyx原式解433221)()()(21)( :3222222zyxxzzyyxzyx其中化简求值245813183213121)43()43()32()32(21)222222(21)(:222222xzyzxyzxyzxyzyxzyx原式解整式运算整式运算(1)、平方差公式)、平方差公式即两个数的和与这两个数的差的积,等于这两个即两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫(乘法的)平方差公式数的平方差。这个公式叫(乘法的)平方差公式.,)(22也可以是代数式既可以是数其中babababa说明说明:平

    6、方差公式是根据多项式乘以多:平方差公式是根据多项式乘以多项式得到的,它是项式得到的,它是两个数的和两个数的和与与同样的同样的两个数两个数的差的差的积的形式的积的形式。6.乘法公式:乘法公式:一般的,我们有:一般的,我们有:(2)、完全平方公式)、完全平方公式法则法则:两数和(或差)的平方,等于它们的:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的平方和,加上(或减去)它们的积的2倍倍。.,2)(;2)(222222也可以是代数式既可以是数其中 bababababababa2222)( :bababa即一般的,我们有:一般的,我们有:注意:注意: (1)(a-b)=-(b-a)

    7、 (2 )(a-b)2=(b-a)2 (3) (-a-b)2=(a+b)2 (4) (a-b)3=-(b-a)3变式一变式一: a a2 2+b+b2 2=(a+b)=(a+b)2 2-2ab-2ab变式二变式二: a a2 2+b+b2 2=(a-b)=(a-b)2 2+2ab+2ab变式五变式五:(a+b)(a+b)2 2-(a-b)-(a-b)2 2=4ab=4ab变式三变式三:(a+b)(a+b)2 2=(a-b)=(a-b)2 2+4ab+4ab变式四变式四:(a-b)(a-b)2 2=(a+b)=(a+b)2 2-4ab-4ab7.添括号的法则:添括号的法则: 添括号时,如果括号前

    8、面是正号,括添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都号前面是负号,括到括号里的各项都要改变符号。要改变符号。(1)、同底数幂的除法)、同底数幂的除法即:同底数幂相除,底数不变,指数相减。即:同底数幂相除,底数不变,指数相减。一般地,我们有一般地,我们有nmnmaaa(其中(其中a0,m、n为为正整数正整数,并且并且mn ))0(10aa8.整式的除法:整式的除法:即任何不等于即任何不等于0的数的的数的0次幂都等于次幂都等于1重点知识重点知识乘法公式乘法公式平方差公式:平方差公式:22)(bababa完全平方

    9、公式公式:完全平方公式公式:2222)(bababa特殊乘法公式:特殊乘法公式:pqxqpxqxpx)()(2配套练习配套练习1.计算:计算:)32)(32)(1 (abab乘法公式乘法公式2)2)(2(yx(2)、单项式除以单项式)、单项式除以单项式 法则:法则:单项式除以单项式,把它们的系数、同单项式除以单项式,把它们的系数、同底数幂分别相除作为商的一个因式,对于只在被底数幂分别相除作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一除式里含有的字母,则连同它的指数作为商的一个因式。个因式。(3)、多项式除以单项式)、多项式除以单项式 法则:法则:多项式除以单项式,先把这

    10、个多项多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商式的每一项除以这个单项式,再把所得的商相加。相加。典型例题典型例题乘法公式乘法公式例例1.计算:计算:)2)(2()( 3) 1 (2yzzyzy分清公式类型分清公式类型)3)(3()2)(23)(2(xxxx典型例题典型例题乘法公式灵活运用乘法公式灵活运用整体思想:整体思想:22ba 例例2.若若 ,求,求 的取值范围。的取值范围。1, 3abba22bababaab2222)(bababa公式:公式:1. 己知己知x+y=3 ,x2+y2=5 则则xy 的值等于多少?的值等于多少?2. 己知己知x-y=4 , xy=

    11、21 ,则则 x2+y2 的值等于多少?的值等于多少?2459)(92929)(532222222xyyxxyyxyxyxyxyx故即解 582121621616216)(21422222xyyxyxyxyxxyyx即解配套练习配套练习 乘法公式灵活运用乘法公式灵活运用典型例题典型例题完全平方式完全平方式例例3.已知已知 是一个完全平是一个完全平方式,则方式,则a的值是的值是( )A B C D1622 axx8484222baba完全平方式:完全平方式:配套练习配套练习完全平方式完全平方式4.已知已知 是一个完全平是一个完全平方式,求方式,求k的值。的值。2592kxx典型例题典型例题特殊公

    12、式特殊公式例例4.要在二次三项式要在二次三项式 中中填上一个整数,使它能按型填上一个整数,使它能按型 分解为的形式,那么这些数只能分解为的形式,那么这些数只能是是( )A BC D 都不对都不对xqpx)(22x6xpq1, 15, 5 5, 5 , 1, 1典型例题典型例题实际应用实际应用例例5.如图,在一块边长为如图,在一块边长为acm的正方形的正方形纸板四角,各剪去一个边长为纸板四角,各剪去一个边长为bcm的正方形,计算当的正方形,计算当时,剩余部分的面积。时,剩余部分的面积。)2(ab 4 . 3, 2 .13baba小结小结整式整式单项式单项式多项式多项式整式运算整式运算整式加减整式加减整式乘法整式乘法整式除法整式除法公式公式

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:整式的乘除复习精品课件.pptx
    链接地址:https://www.163wenku.com/p-2460675.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库