大学高等几何课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学高等几何课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 高等 几何 课件
- 资源描述:
-
1、1一、高等几何的内容一、高等几何的内容高等几何数学与应用数学专业主干课程之一前三高数学分析高等代数高等几何后三高实变函数近世代数点集拓扑高等几何射影几何几何基础本课程主要介绍平面射影几何知识(教材前五章)综合大学:空间解几仿射几何、射影几何, 一个学期2一、高等几何的内容一、高等几何的内容什么是射影几何?直观描述欧氏几何仿射几何射影几何十九世纪名言一切几何学都是射影几何鸟瞰下列几何学3研究图形在“搬动”之下保持不变的性质和数保持不变的性质和数量量搬动正交变换对图形作有限次的平移、旋转、轴反射的结果欧氏几何研究图形的正交变换不变性的科学(统称不变性不变性,如距离、角度、面积、体积等)4平行射影仿
2、射变换仿射几何研究图形的仿射变换不变性的科学透视仿射变换有限次平行射影的结果仿射不变性比如平行性、两平行线段的比等等5中心射影射影变换射影几何研究图形的射影变换不变性的科学透视变换有限次中心射影的结果射影不变性比如几条直线共点、几个点共线等等射影变换将彻底改变我们原有的几何射影变换将彻底改变我们原有的几何空间观念!空间观念!6一、高等几何的内容一、高等几何的内容二、高等几何的方法二、高等几何的方法综合法给定公理系统(一套相互独立、无矛盾、完备的命题系统),演绎出全部内容解析法形、数结合,利用代数、分析的方法研究问题本课程以解析法为主,兼用综合法7一、高等几何的内容一、高等几何的内容二、高等几何
3、的方法二、高等几何的方法三、开课目的三、开课目的 学习射影几何,拓展几何空间概念,引入几何变换知识,接受变换群思想 训练理性思维、抽象思维、逻辑推理能力,增强数学审美意识,提高数学修养 新颖性,趣味性,技巧性,反馈于初等几何和其他学科,提高观点,加深理解,举一反三8四、几何的发展历史线索四、几何的发展历史线索射影几何学是一切的几何学射影几何学是一切的几何学 英英 Cayley Cayley经验几何经验几何(远古(远古元前元前600600年)年)论证几何论证几何(欧氏几何)(欧氏几何)演绎化演绎化(元前(元前600600年年 400400年)年)积累了丰富的积累了丰富的经验,但未上经验,但未上升
4、成系统理论升成系统理论埃及几何跟希腊逻辑埃及几何跟希腊逻辑方法相结合,以抽象方法相结合,以抽象化、逻辑化为特点化、逻辑化为特点非欧几何非欧几何第第公设研究公设研究几何基础几何基础(公理几何)(公理几何)对古典公理体系的完善对古典公理体系的完善解析几何解析几何射影几何射影几何微分几何微分几何研究方法改变研究方法改变拓扑学拓扑学哥德堡七桥问题哥德堡七桥问题9画法几何画法几何解析几何解析几何(17(17世纪世纪) )仿射几何仿射几何(坐标法)(坐标法)代数几何代数几何代数法代数法代数曲线代数曲线代数曲面代数曲面代数族代数族域上多胞形域上多胞形微分几何微分几何(19(19世纪世纪) )(分析方法)(分
5、析方法)张量分析张量分析微分流形、黎曼流形、复流形微分流形、黎曼流形、复流形大范围微分几何大范围微分几何射影几何射影几何(19(19世纪世纪) )(综合法、爱尔(综合法、爱尔兰根纲领代数法)兰根纲领代数法)特例特例应用应用四、几何的发展历史线索四、几何的发展历史线索10非欧几何非欧几何罗氏几何罗氏几何黎曼几何黎曼几何(1919世纪)世纪)四、几何的发展历史线索四、几何的发展历史线索拓扑学拓扑学(几何与代数、(几何与代数、分析相结合,分析相结合,多样化发展)多样化发展)点集拓扑点集拓扑代数拓扑代数拓扑解析拓扑解析拓扑分形几何分形几何微分拓扑微分拓扑微分流形微分流形纤维丛纤维丛11 周学时周学时3
6、 3,一个学期,学习第一章第六章,一个学期,学习第一章第六章五、五、 主要参考书:主要参考书:梅向明、门淑惠等编梅向明、门淑惠等编高等几何高等几何, ,高等教育出版社出版,高等教育出版社出版,20082008年年; ; 朱德祥、朱维宗等编朱德祥、朱维宗等编高等几何高等几何(第二版)(第二版), ,高等教育出高等教育出版社出版,版社出版,20102010年年; ;罗崇善编罗崇善编高等几何高等几何, ,高等教育出版社出版高等教育出版社出版,1999,1999年年6 6月;月; 朱德祥、李忠映、徐学钰等编朱德祥、李忠映、徐学钰等编高等几何习题解答高等几何习题解答。 12本章地位学习射影几何的基础本章
7、内容阐明仿射变换的概念,研究仿射变换的不变量与不变性质。学习注意认真思考,牢固掌握基本概念,排除传统习惯干扰13透视仿射对应一、概念 与b交于,A B C , ,A B C1、同一平面内两直线a到b间的透视对应,设L为平面上另外一直线,a与 b不平行。过a上的点 作与L平行的直线即得a到b的一个一一映射,称为透视仿射对应。注:透视仿射对应与L的方向无关。若a与b相交,交点称为自对应点。第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换14两条直线间的透视仿射对应两条直线间的透视仿射对应LaboABCA/B/C/第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换15两个平面间的透视仿射对应两
8、个平面间的透视仿射对应M1ABCA1B1C1L第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换162、定义1)设12,P P P为共线三点 P1P2P为共线三点 12,P P P的单比,12,P P叫基点P叫分点。12,PP P P是有向线段12,PP P P 的数量 第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换1122()PPPP PP P称172). 符号(P1P2P)表示一个数, 是有向线段P1P与P2P的比值, 与解几中的定比分点反号. 3).与定比的区别18二性质3保平行性2保单比不变 1保同素性和结合性19第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换第二节、第二
9、节、 仿射对应与仿射变换仿射对应与仿射变换 一、概念 设同一平面内有n条直线,12,na aa如下图12,n 是 12231,nnaa aaaa到到到的透视仿射对应经过这一串对应,得到1naa到的透视仿射对应,这个对应称为1naa到的仿射对应。记作:121nn 20如图所示:如图所示:第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换21如图如图第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换22二、性质二、性质为什么?第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换(1)保持同素性和结合性;(2)保持共线三点的单比不变;(3)保持直线的平行性不变。注:仿射对应下,对应点的连线不一定
10、平行。23反之,若两个平面间的一个点对应(变换)保持同素性、结合性和共线三点的单比不变,则这个点对应(变换)称为仿射对应(变换)例、平行四边形经仿射(对应)变换仍变为平行四边形例、两平行线段之比经仿射对应不变例、仿射对应保持平形性不变第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换24第三节、仿射坐标系、定义笛卡尔坐标系在仿射对应下的像叫做仿射坐标系,( , )x y叫点P的仿射坐标记为( ,)P x y的仿射坐标为、设共线三点123,P P P112233( ,),(,),(,)x yxyxy则单比为31311233232(,)xxyyp ppxxyy第一章、仿射坐标与仿射变换第一章、仿
11、射坐标与仿射变换25第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换26仿射变换的坐标表示 已知仿射坐标:仿射变换为:T 变换将 : 且 1212132311211222, , ; , a ,),(,),(,)o e eo e eaaaaa在下的坐标分别为:(12 ,o e e12 ,o e e12 ,o e e第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换27平行四边形 变为平行四边形 ,且保持单比不变,故 在坐标系 中的坐标为 (x,y) o o/ p p/ px py px/ py/ x y y/ x/第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换xyOP PxyO P
12、PP12; ,O e e28一方面 :, 另一方面: 所以:13 123 21213 123 211 121 212 122 211121312122232()()()()opooo pa ea exeyea ea ex a ea ey a ea ea xa yaea xa yae111213212223xa xa yaya xa ya第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换12OPxeye29例 已知三点 求仿射变换T使顺次变为 . 练习:1、求使直线 分别变为 的仿射变换。 2、已知仿射变换 求点 的像点,及直线 的像直线。/213xxyyxy 第一章、仿射坐标与仿射变换第一章
13、、仿射坐标与仿射变换(0,0),(1,1), (1, 1)OEP111(2,3),(2,5),(3, 7)OEP0,0,210 xyxy 0,0,210 xyxyxy 12(1,0),( 1,0)PP 20 xy30复习仿射坐标及代数表示式 正交变换 位似变换22221112131121122211 122122212223,1,0 xa xa yaaaaaa aa aya xa ya1323,0 xkxakykya第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换31相似变换压缩变换12,1xaxbydybxayd ,0 xaxabyby第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换
14、32第四节、仿射性质 一、定义:图形经过任何仿射变换后都不变的性质(量),称为图形的仿射性质(量)第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换同素性,结合性,平行性是仿射性质。单比是仿射不变量。33证明:两平行直线经过仿射变换后仍变为平行直线 证明:设变换为:T:111222111222,:,:/uvxaxAlulvuvybyuvlluvuv 直线即1111122222uvvuvAAAuvvuv第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换例34二、重要结论: 1、两相交直线经仿射变换后仍为相交直线。第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换2、共点直线仍变为共点直线3
15、、两平行线段之比是仿射不变量。4、两三角形面积之比是仿射不变量(证明见课本)355、两个多边形面积之比是仿射不变量6、两封闭图形面积之比是仿射不变量 例、求椭圆的面积ABCOD第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换36设在笛卡尔直角坐标系下椭圆方程 为 :222221o,xxxyxyaaabyybo AAA BB作变换变为在仿射变换下:20,1122AOBA Bsssabsabssaba椭圆椭椭即第一章、仿射坐标与仿射变换第一章、仿射坐标与仿射变换37一、中心射影一、中心射影1、平面上两直线间的中心射影定义定义1.22 :ll 因此 ,1: l l是 l 到 l 的中心射影OP
16、投射线P l 上的点P在l上的像P l 上的点P在l上的像OV/l, 与l不相交, V为l上的影消点影消点影消点的存在,导致两直线间的中心射影不是一个一一对应一一对应! !X=ll 自对应点OU/l, 与l不相交, U为l上的影消点影消点三个特殊点:三个特殊点:()OOll 投射中心38一、中心射影一、中心射影2、平面到平面的中心射影定义定义1.23 :OP 投射线P 上的点P 在上的像P 上的点P在上的像因此 ,:1是到的中心射影 自对应直线(不变直线)三条特殊的线:三条特殊的线:x , u为由影消点影消点构成的影消线影消线/,OUuUu , v为由影消点影消点构成的影消线影消线/, , O
17、VvVv影消线的存在导致两平面间的中心射影不是一个一一对应()OO投射中心39一、中心射影一、中心射影1、平面上两直线间的中心射影定义1.22 :ll 2、平面到平面的中心射影定义1.23 :均不是一一对应中心射影不是双射的原因:存在影消点、影消线 存在影消点、影消线的原因:平行的直线没有交点如何使得中心射影成为一一对应?给平行线添加交点!给平行线添加交点!40一、中心射影一、中心射影二、无穷远元素二、无穷远元素目标:改造空间,使得中心射影成为双射途径:给平行直线添加交点要求:不破坏下列两个基本关系两条相异直线确定惟一一个点(交点)两个相异点确定惟一一条直线(连线)点与直线的关联关系点与直线的
18、关联关系41二、无穷远元素二、无穷远元素 约定约定1.11.1 (1) 在每一条直线上添加惟一一个点,此点不是该直线上原有的点. 称为无穷远点无穷远点(理想点理想点),记作P (2) 相互平行的直线上添加的无穷远点相同, 不平行的直线上添加的无穷远点不同.区别起见,称平面上原有的点为有穷远点(通常点),记作P 约定约定1.11.1 (3) 按约定(1), (2)添加无穷远点之后,平面上全体无穷远点构成一条直线,称为无穷远直线无穷远直线(理想直线理想直线),记作l区别起见,称平面上原有的直线为有穷远直线(通常直线),l 总结:总结:在平面上添加无穷远元素之后,没有破坏点与直线的关联关系,同时使得
19、中心射影成为一一对应.42理解约定理解约定1.1(1), (2)1.1(1), (2)1、对应平面上每一方向,有惟一无穷远点. 平行的直线交于同一无穷远点;交于同一无穷远点的直线相互平行.2、每一条通常直线上有且仅有一个无穷远点.3、平面上添加的无穷远点个数过一个通常点的直线数.4、不平行的直线上的无穷远点不同. 因而,对于通常直线:两直线平 行不平行交于惟一无穷远点有穷远点平面上任二直线总相交5、空间中每一组平行直线交于惟一无穷远点.6、任一直线与其平行平面交于惟一无穷远点.43理解约定理解约定1.1(3)1.1(3)1、无穷远直线为无穷远点的轨迹. 无穷远直线上的点均为无穷远点;平面上任何
20、无穷远点均在无穷远直线上.2、每一条通常直线与无穷远直线有且仅有一个交点为该直线上的无穷远点.3、每一平面上有且仅有一条无穷远直线.4、每一组平行平面有且仅有一条交线为无穷远直线;过同一条无穷远直线的平面相互平行. 因而,对于通常平面:两平面平 行不平行交于惟一无穷远直线有穷远直线空间中任二平面必相交于唯一直线44三、射影平面三、射影平面 定义定义 通常点和无穷远点统称拓广点拓广点; 添加无穷远点后的直线和无穷远直线统称为拓广直线拓广直线(射影仿射影仿射直线射直线); 添加无穷远直线后的平面称为拓广平面拓广平面(射影仿射平面射影仿射平面). 定理定理 在拓广平面上, 点与直线的关联关系关联关系
21、成立: (1) 两个相异的拓广点确定惟一一条拓广直线; (2) 两条相异的拓广直线确定惟一一个拓广点.(1) 拓广直线的封闭性拓广直线:向两方前进最终都到达同一个无穷远点四、拓广直线、拓广平面的基本性质及模型四、拓广直线、拓广平面的基本性质及模型欧氏直线:向两个方向无限伸展1 1、拓广直线、拓广直线( (射影仿射直线射影仿射直线) )45(2) 拓广直线的拓扑模型46(3) 射影直线上点的分离关系欧氏直线:一点区分直线为两个部分。欧氏直线:一点区分直线为两个部分。射影直线:一点不能区分直线为两个部分。射影直线:一点不能区分直线为两个部分。欧氏直线:两点确定直线上的一条线段。欧氏直线:两点确定直
22、线上的一条线段。射影直线:两点不能确定直线上的一条线段。射影直线:两点不能确定直线上的一条线段。点偶A,B分离分离点偶C,D点偶A,B不分离不分离点偶C,D47(i) 任一直线划分欧氏平面为两个不同的区域任一直线不能不能划分射影平面为两个不同的区域(ii) 两条相交直线划分欧氏平面为四个四个不同的区域两条相交直线划分射影平面为两个两个不同的区域在射影平面上,可以证明:I,II为同一区域III,IV为同一区域2 2、射影平面、射影平面( (射影仿射平面射影仿射平面) )四、射影直线、射影平面的基本性质及模型四、射影直线、射影平面的基本性质及模型(1) 射影平面的封闭性(从两个方面理解)482 2
23、、射影平面、射影平面( (射影仿射平面射影仿射平面) )四、射影直线、射影平面的基本性质及模型四、射影直线、射影平面的基本性质及模型射影平面的封闭性49一、一、DesarguesDesargues透视定理透视定理一个古老、美丽、实用的重要定理!1、两个三点形的对应关系 若两个三点形对应顶点的连线共点,则称这对对应三点形具有透视中心透视中心,透视中心也称为DesarguesDesargues 点点. 若两个三点形对应边的交点共线,则称这对对应三点形具有透视轴透视轴,透视轴也称为Desargues Desargues 线线.问题存在透视轴?存在透视中心请问你是怎样画出这两个图的?50画图过程演示5
24、1一、一、DesarguesDesargues透视定理透视定理1、两个三点形的对应关系2、Desargues透视定理定理(Desargues透视定理及其逆).对于两个对应三点形,存在Desargues点存在Desargues线 注1 1、满足Desargues定理的一对三点形称为透视的透视的三点形.证明52Desargues定理画图过程演示53一、一、DesarguesDesargues透视定理透视定理2、Desargues透视定理 注注2 2、关于Desargues构图. 左图表示了一对透视的三点形ABC, ABC.AABCB CXBBOCA C AYCCABA BZ共点于三点共线 左图中共
25、有10个点、10条直线,过每个点有三条直线;在每条直线上有三个点. 这10点, 10线地位平等,此图称为DesarguesDesargues构图构图.Desargues.A OAB CZYXAA B ZOB CAZYC O YACA C YOBAZB点Desargues线54 分析分析:为证X, Y, Z三点共线, 试在图中找出一对对应三点形, 具有透视中心,且对应边的交点恰为X, Y, Z.二、应用举例二、应用举例1、证明共线点与共点线问题 由题给, X, Y, Z分别为三对直线的交点, 此三直线涉及到六个字母, 试ADBECF.三点共线ZDEABYFDCAXEFBC 例1 在欧氏平面上,
展开阅读全文