微积分无穷级数试题课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分无穷级数试题课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 无穷 级数 试题 课件
- 资源描述:
-
1、常数项级数常数项级数函数项级数函数项级数一一般般项项级级数数正正项项级级数数幂级数幂级数三角级数三角级数收收敛敛半半径径R R泰勒展开式泰勒展开式数或函数数或函数函函 数数数数任任意意项项级级数数傅氏展开式傅氏展开式傅氏级数傅氏级数泰勒级数泰勒级数0)(xR为常数为常数nu)(xuunn为函数为函数满足狄满足狄 氏条件氏条件0 xx 取取在收敛在收敛 级数与数级数与数条件下条件下 相互转化相互转化 一、主要内容一、主要内容 nnnuuuuu32111 1、常数项级数、常数项级数 常数项级数收敛常数项级数收敛( (发散发散) )nns lim存在存在( (不存在不存在) ). . niinnuu
2、uus121级数的部分和级数的部分和定义定义级数的收敛与发散级数的收敛与发散性质性质1 1: : 级数的每一项同乘一个不为零的常数级数的每一项同乘一个不为零的常数, ,敛散性不变敛散性不变. .性质性质2 2: :收敛级数可以逐项相加与逐项相减收敛级数可以逐项相加与逐项相减. .性质性质3 3: :在级数前面加上有限项不影响级数的敛在级数前面加上有限项不影响级数的敛散性散性.性质性质4 4: :收敛级数加括弧后所成的级数仍然收敛收敛级数加括弧后所成的级数仍然收敛于原来的和于原来的和. . 0lim nnu级数收敛的必要条件级数收敛的必要条件:收敛级数的基本性质收敛级数的基本性质常数项级数审敛法
3、常数项级数审敛法正正 项项 级级 数数任意项级数任意项级数1.2.4.充要条件充要条件5.比较法比较法6.比值法比值法7.根值法根值法4.绝对收敛绝对收敛5.交错级数交错级数(莱布尼茨定理莱布尼茨定理)3.按基本性质按基本性质;,则级数收敛则级数收敛若若SSn;, 0,则级数发散则级数发散当当 nun一般项级数一般项级数4.绝对收敛绝对收敛定义定义0,1 nnnuu.有界有界部分和所成的数列部分和所成的数列正项级数收敛正项级数收敛ns2 2、正项级数及其审敛法、正项级数及其审敛法审敛法审敛法(1) (1) 比较审敛法比较审敛法若若 1nnu收敛收敛( (发散发散) )且且)(nnnnvuuv
4、, ,则则 1nnv收敛收敛( (发散发散) ). .(2) (2) 比较审敛法的极限形式比较审敛法的极限形式设设 1nnu与与 1nnv都是正项级数都是正项级数,如果如果lvunnn lim,则则(1) 当当 l0时时,二级数有相同的敛散性二级数有相同的敛散性; (2) 当当0 l时,若时,若 1nnv收敛收敛,则则 1nnu收敛收敛; (3) 当当 l时时, 若若 1nnv发散发散,则则 1nnu发散发散;设设 1nnu为正项级数为正项级数,如果如果0lim lnunn (或或 nnnulim),则级数则级数 1nnu发散发散;如果有如果有1 p, 使得使得npnun lim存在存在,则级
5、数则级数 1nnu收敛收敛.(3) (3) 极限审敛法极限审敛法(4) (4) 比值审敛法比值审敛法( (达朗贝尔达朗贝尔 D DAlembertAlembert 判别法判别法) )设设 1nnu是是正正项项级级数数,如如果果)(lim1 数数或或nnnuu则则1 时级数收敛时级数收敛;1 时级数发散时级数发散; 1 时失效时失效.(5) (5) 根值审敛法根值审敛法 ( (柯西判别法柯西判别法) )设设 1nnu是正项级数是正项级数, ,如果如果 nnnulim)( 为数或为数或 , ,则则1 时级数收敛时级数收敛; ; 1 时级数发散时级数发散; ;1 时失效时失效. .定义定义 正正 、
6、负项相间的级数称为交错级数、负项相间的级数称为交错级数. . nnnnnnuu 111)1()1(或或莱布尼茨定理莱布尼茨定理 如果交错级数满足条件如果交错级数满足条件: :( () ), 3 , 2 , 1(1 nuunn;(;() )0lim nnu, ,则则级数收敛级数收敛, , 且其和且其和1us , , 其余 项其余 项nr的绝对值的绝对值1 nnur. .)0( nu其中其中3 3、交错级数及其审敛法、交错级数及其审敛法定义定义 正项和负项任意出现的级数称为任意项级数正项和负项任意出现的级数称为任意项级数.定理定理 若若 1nnu收敛收敛,则则 1nnu收敛收敛.定义定义: :若若
7、 1nnu收敛收敛, , 则称则称 0nnu为绝对收敛为绝对收敛; ;若若 1nnu发发散散, ,而而 1nnu收收敛敛, , 则则称称 1nnu为为条条件件收收敛敛. .4 4、任意项级数及其审敛法、任意项级数及其审敛法5 5、函数项级数、函数项级数(1) (1) 定义定义设设),(,),(),(21xuxuxun是是定定义义在在RI 上上的的函函数数, ,则则 )()()(211xuxuxunn称称为为定定义义在在区区间间I上上的的( (函函数数项项) )无无穷穷级级数数. .(2) (2) 收敛点与收敛域收敛点与收敛域如如果果Ix 0,数数项项级级数数 10)(nnxu收收敛敛,则称则称
8、0 x为级数为级数)(1xunn 的的收敛点收敛点, ,否否则则称称为为发发散散点点. .所有发散点的全体称为所有发散点的全体称为发散域发散域. .函数项级数函数项级数)(1xunn 的所有收敛点的全体称为的所有收敛点的全体称为收敛域收敛域, ,(3) (3) 和函数和函数在收敛域上在收敛域上, ,函数项级数的和是函数项级数的和是x的函数的函数)(xs, ,称称)(xs为函数项级数的为函数项级数的和函数和函数. .(1) (1) 定义定义形如形如nnnxxa)(00 的级数称为的级数称为幂级数幂级数.,00时时当当 x其其中中na为为幂幂级级数数系系数数.6 6、幂级数、幂级数nnnxa 0如
9、如果果级级数数 0nnnxa在在0 xx 处处发发散散, ,则则它它在在满满足足不不等等式式0 xx 的的一一切切x处处发发散散. .定理定理 1 (1 (AbelAbel 定理定理) )如如果果级级数数 0nnnxa在在)0(00 xxx处处收收敛敛, ,则则它它在在满满足足不不等等式式0 xx 的的一一切切x处处绝绝对对收收敛敛; ;(2) (2) 收敛性收敛性如如果果幂幂级级数数 0nnnxa不不是是仅仅在在0 x一一点点收收敛敛, ,也也不不是是在在整整个个数数轴轴上上都都收收敛敛, ,则则必必有有一一个个完完全全确确定定的的正正数数R存存在在, ,它它具具有有下下列列性性质质: :当
10、当Rx 时时, ,幂幂级级数数绝绝对对收收敛敛; ;当当Rx 时时,幂级数发散幂级数发散;当当RxRx 与与时时, ,幂级数可能收敛也可能发散幂级数可能收敛也可能发散. .推论推论定义定义: : 正数正数R称为幂级数的称为幂级数的收敛半径收敛半径.幂级数的收敛域称为幂级数的幂级数的收敛域称为幂级数的收敛区间收敛区间.定理定理 2 2 如果幂级数如果幂级数 0nnnxa的所有系数的所有系数0 na,设设 nnnaa1lim (或或 nnnalim)(1) 则则当当0 时时, 1R;(3) 当当 时时,0 R.(2) 当当0 时时, R;a.a.代数运算性质代数运算性质: : 加减法加减法 00n
11、nnnnnxbxa.0 nnnxc(其中其中 21,minRRR )nnnbac RRx, ,2100RRxbxannnnnn和和的收敛半径各为的收敛半径各为和和设设 (3)(3)幂级数的运算幂级数的运算乘法乘法)()(00 nnnnnnxbxa.0 nnnxc RRx, (其中其中)0110bababacnnnn 除法除法 00nnnnnnxbxa.0 nnnxc)0(0 nnnxb收敛域内收敛域内b.b.和函数的分析运算性质和函数的分析运算性质: : 幂幂级级数数 0nnnxa的的和和函函数数)(xs在在收收敛敛区区间间),(RR 内内连连续续,在在端端点点收收敛敛,则则在在端端点点单单侧
12、侧连连续续. 幂级数幂级数 0nnnxa的和函数的和函数)(xs在收敛区间在收敛区间),(RR 内可积内可积,且对且对),(RRx 可逐项积分可逐项积分. 幂级数幂级数 0nnnxa的和函数的和函数)(xs在收敛区间在收敛区间),(RR 内可导内可导, 并可逐项求导任意次并可逐项求导任意次.7 7、幂级数展开式、幂级数展开式 如果如果)(xf在点在点0 x处任意阶可导处任意阶可导,则幂级数则幂级数nnnxxnxf)(!)(000)( 称为称为)(xf在点在点0 x的的泰勒级数泰勒级数.nnnxnf 0)(!)0(称为称为)(xf在点在点0 x的的麦克劳林级数麦克劳林级数.(1) 定义定义定理定
13、理 )(xf在点在点0 x的泰勒级数的泰勒级数, ,在在)(0 xU 内收内收敛于敛于)(xf在在)(0 xU 内内0)(lim xRnn. .(2) 充要条件充要条件(3) 唯一性唯一性定理定理 如果函数如果函数)(xf在在)(0 xU 内内能能展开成展开成)(0 xx 的幂级数的幂级数, , 即即 nnnxxaxf)()(00 , ,则其系数则其系数 ), 2 , 1 , 0()(!10)( nxfnann且展开式是唯一的且展开式是唯一的. .(3) 展开方法展开方法a.a.直接法直接法( (泰勒级数法泰勒级数法) )步骤步骤:;!)()1(0)(nxfann 求求,)(0lim)2()(
14、MxfRnnn 或或讨论讨论).(xf敛于敛于则级数在收敛区间内收则级数在收敛区间内收b.b.间接法间接法 根据唯一性根据唯一性, 利用常见展开式利用常见展开式, 通过通过变量代换变量代换, 四则运算四则运算, 恒等变形恒等变形, 逐项求导逐项求导, 逐项积逐项积分分等方法等方法,求展开式求展开式.),(!1! 2112 xxnxxenx )!12()1(! 51! 31sin1253nxxxxxnn),( x )!2()1(! 41! 211cos242nxxxxnn),( x(4) 常见函数展开式常见函数展开式)1 , 1( x nxnnxxx!)1()1(! 2)1(1)1(2 )1ln
15、(x nxxxxnn 132)1(31211 , 1( x(5) 应用应用a.a.近似计算近似计算b.b.欧拉公式欧拉公式,sincosxixeix ,2cosititeet ,2sinieetitit (1) (1) 三角函数系三角函数系,sin,cos,2sin,2cos,sin,cos, 1nxnxxxxx.,上的积分等于零上的积分等于零任意两个不同函数在任意两个不同函数在正交性正交性 , 0cos nxdx, 0sin nxdx三角函数系三角函数系8 8、傅里叶级数、傅里叶级数 nmnmnxdxmx, 0sinsin nmnmnxdxmx, 0coscos0cossin nxdxmx)
16、, 2 , 1,( nm其其中中(2) (2) 傅里叶级数傅里叶级数 10)sincos(2nnnnxbnxaa定义定义三角级数三角级数其中其中 ), 2 , 1(,sin)(1), 2 , 1 , 0(,cos)(1nnxdxxfbnnxdxxfann称为傅里叶级数称为傅里叶级数. 10)sincos(2nnnnxbnxaa(3) (3) 狄利克雷狄利克雷(Dirichlet)(Dirichlet)充分条件充分条件( (收敛定理收敛定理) ) 设设)(xf是是以以 2为为周周期期的的周周期期函函数数.如如果果它它满满足足条条件件:在在一一个个周周期期内内连连续续或或只只有有有有限限个个第第一
17、一类类间间断断点点,并并且且至至多多只只有有有有限限个个极极值值点点,则则)(xf的的傅傅里里叶叶级级数数收收敛敛,并并且且(1) 当当x是是)(xf的连续点时的连续点时,级数收敛于级数收敛于)(xf;(2) 当当x是是)(xf的间断点时的间断点时, 收敛于收敛于2)0()0( xfxf;(3) 当当x为为端端点点 x时时,收收敛敛于于2)0()0( ff. 如果如果)(xf为奇函数为奇函数, 傅氏级数傅氏级数nxbnnsin1 称为称为正弦级数正弦级数.(4) (4) 正弦级数与余弦级数正弦级数与余弦级数 当当周周期期为为 2的的奇奇函函数数)(xf展展开开成成傅傅里里叶叶 级级数数时时,它
展开阅读全文