最新版数学16.3二次根式的混合运算ppt优质教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新版数学16.3二次根式的混合运算ppt优质教学课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新版 数学 16.3 二次 根式 混合 运算 ppt 优质 教学 课件
- 资源描述:
-
1、16.3 二根次式的加减第十六章 二次根式 优优 翼翼 课课 件件 导入新课讲授新课当堂练习课堂小结 八年级数学下(RJ) 教学课件第2课时 二次根式的混合运算学习目标1. 掌握二次根式的混合运算的运算法则.(重点)2.会运用二次根式的混合运算法则进行有关的运算.(难点)导入新课导入新课问题1 单项式与多项式、多项式与多项式的乘法法则法则分别是什么?问题2 多项式与单项式的除法法则是什么? m(a+b+c)=ma+mb+mc;(m+n)(a+b)=ma+mb+na+nb复习引入(ma+mb+mc)m=a+b+c分配律 单多 转化 前面两个问题的思路是:思考 若把字母a,b,c,m都用二次根式代
2、替(每个同学任选一组),然后对比归纳,你们发现了什么? 单单 讲授新课讲授新课 二次根式的混合运算及应用一 二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用.例1 计算:18+ 3624 23 62 2()();( )(); 解:18+ 3686+ 36()()4 3+3 2.24 23 62 24 22 23 62 2( )()323.2 二次根式的混合运算,先要弄清运算种类,再确定运算顺序:先乘除,再加减,有括号的要算括号内的,最后按照二次根式的相应的运算法则进行.归纳3 ( 23)( 25).( )23 ( 23)( 25)25 2+3 215(
3、 )()解:132 2 . 此处类比“多项式多项式”即(x+a)(x+b)=x2+(a+b)x+ab.(1) 32327+63();06(2) 20163 + 312.2()-633 336 解:(1)原式3 3 . (2)原式1+2 333 32.【变式题】计算: 有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.归纳例2 甲、乙两个城市间计划修建一条城际铁路, 其中有一段路基的横断面设计为上底宽 ,下底宽 ,高 的梯形,这段路基长 500 m,那么这段路基的土石方 (即路基的体积,其中路基的体积=路基横断面面积路基的长度)为多少立方米呢?62m42m6m4 2m
4、6m6 2m典例精析解:路基的土石方等于路基横断面面积乘以路基的长度,所以这段路基的土石方为:14 26 265002 23 2650025 2650035000 3 m.答:这段路基的土石方为35000 3m . 计算: 3 1 6 2 2 2 + 2 1 28-( ) ( ) ; () . () .3=6228 - -3=6 228 - -.3= 2 323=32 - -3 1 6 28( ) ( ) - - 2 2 + 2 1 2 ()()- -= 2 2 2 + 222 -= 2 2 2 + 2 2 -.= 2 - - :解解练一练问题1 整式乘法运算中的乘法公式有哪些? 平方差公式:
5、(a+b)(a-b)=a2-b2;完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.利用乘法公式进行二次根式的运算二问题2 整式的乘法公式对于二次根式的运算也适用吗? 整式的乘法公式就是多项式多项式前面我们已经知道二次根式运算类比整式运算,所以适用哟例3 计算:21( 53)( 53);(2) ( 32) .()2253() () 解:1( 53)( 53)()532.2(2) ( 32)223232+2 ()34 3+474 3 .典例精析 (3) 3 248184 3 ;32(4).aa babaabab 解:30. 3 24 33 24 3 (3) 3 2
6、48184 3223 24 3. baabaababababaab32(4)aa babaabab 进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式,因式分解等来简化运算.归纳【变式题】计算:2018201812 232 23;()()()20172019322-3232.2 ( ) ()()解:(1)原式20182 232 2+3=() ()20181=()1.=(2)原式201723 2- 323 2322 () ()()201717+4 33()7+4 337+3 3. 计算:2(1) 2 2-1( 2)2- 357
展开阅读全文