4机械振动PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《4机械振动PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械振动 PPT 课件
- 资源描述:
-
1、第二篇第二篇 机械振动机械振动与机械波与机械波广义振动广义振动:任一物理量:任一物理量( (如位移、电流等如位移、电流等) )在某一在某一 数值附近反复变化。数值附近反复变化。 振动分类振动分类非线性振动非线性振动线性振动线性振动受迫振动受迫振动自由振动自由振动机械振动机械振动:物体在一定位置附近作来回往复的运动。:物体在一定位置附近作来回往复的运动。4-1 简谐振动的动力学特征简谐振动的动力学特征最简单最基本的线性振动。最简单最基本的线性振动。简谐振动简谐振动:一个作往复运动的物体,如果其偏离:一个作往复运动的物体,如果其偏离平衡位置的位移平衡位置的位移x(或角位移(或角位移 )随时间)随时
2、间t按余弦按余弦(或正弦)规律变化的振动。(或正弦)规律变化的振动。)tcos(Ax0 一、弹簧振子模型一、弹簧振子模型弹簧振子弹簧振子:弹簧:弹簧物体系统物体系统 平衡位置:平衡位置:弹簧处于自然状态的稳定位置弹簧处于自然状态的稳定位置轻轻弹簧弹簧质量忽略不计,形变满足胡克定律质量忽略不计,形变满足胡克定律 物体物体可看作质点可看作质点 kxOmkxF 22dtxdmkx mk 2 简谐振动简谐振动微分方程微分方程0222 xdtxd 单摆单摆0222 dtd结论结论:单摆的小角度摆动振动是简谐振动。单摆的小角度摆动振动是简谐振动。角频率角频率, ,振动的周期分别为:振动的周期分别为:glT
3、lg 2200 当当 时时 sin sinmglM 二、微振动的简谐近似二、微振动的简谐近似gmfTCO mgldtdml 22摆球对摆球对C点的力矩点的力矩 mglM l/g 2 复摆复摆:绕不过质心的水平固定轴转动的刚体:绕不过质心的水平固定轴转动的刚体0222 dtd结论结论:复摆的小角度摆动振动是简谐振动。复摆的小角度摆动振动是简谐振动。 sin当当 时时gmhCO22dtdImgh Imgh 2 其通解为:其通解为:一、简谐振动的运动学方程一、简谐振动的运动学方程)tcos(Ax0 0222 xdtxd 4-2 简谐振动的运动学简谐振动的运动学简谐振动的微分方程简谐振动的微分方程简谐
4、振动的运动学方程简谐振动的运动学方程)tsin()tcos(200 20 )tsin(x 二、二、描述简谐振动的特征量描述简谐振动的特征量)tcos(Ax0 1 1、振幅、振幅 A 简谐振动物体离开平衡位置的最大位简谐振动物体离开平衡位置的最大位移(或角位移)的绝对值。移(或角位移)的绝对值。)tsin(Av0 000vv ,xx,t 初始条件初始条件00 cosAx 00 sinAv 2020)v(xA 频率频率 :单位时间内振动的次数。单位时间内振动的次数。2、周期周期 、频率、圆频率频率、圆频率对弹簧振子对弹簧振子 21 T角频率角频率 22 TkmT 2 mk 21 mk 固有周期、固
5、有频率、固有角频率固有周期、固有频率、固有角频率周期周期T :物体完成一次全振动所需时间。物体完成一次全振动所需时间。 00 )Tt(cosA)tcos(A 2 T单摆单摆glT 2 lg 21 lg 复摆复摆mghIT 2 Imgh 21 Imgh )tsin(Av0 0 是是t =0时刻的位相时刻的位相初位相初位相000 cosAxt 时时00 sinAv 000 xvtan 3、位相和初位相位相和初位相)tcos(Ax0 位相,决定谐振动物体的运动状态位相,决定谐振动物体的运动状态0 t位相差位相差 两振动位相之差。两振动位相之差。12 当当=2k ,k=0,1,2,两振动步调相同两振动
6、步调相同, ,称称同相同相当当 = (2k+1) , k=0,1,2.两振动步调相反两振动步调相反, ,称称反相反相 0 2 超前于超前于 1 或或 1滞后于滞后于 2 位相差反映了两个振动不同程度的参差错落位相差反映了两个振动不同程度的参差错落 三、简谐振动的三、简谐振动的旋转矢量表示法旋转矢量表示法 0t = 0Ax t+ 0t = tA)tcos(Ax0 oX用旋转矢量表示相位关系用旋转矢量表示相位关系x1A2A x1A2A x1A2A 同相同相反相反相)tcos(a)tcos(Aam 002)tcos(Ax0 )tcos(v)tsin(Avm200 谐振动的位移、速度、加速度之间的位相
7、关系谐振动的位移、速度、加速度之间的位相关系toTa vx.avxT/4T/4)2cos( tvvmx)2cos( tA)cos( taamx)cos(2 tA由图可见:由图可见:2 va超前超前2 xv超超前前x t+ o Amv ma 090090例例:如图如图m=210-2kg, 弹簧的静止形变为弹簧的静止形变为 l=9.8cm t=0时时 x0=-9.8cm, v0=0 取开始振动时为计时零点,取开始振动时为计时零点, 写出振动方程;写出振动方程;(2)若取)若取x0=0,v00为计时零点,为计时零点, 写出振动方程写出振动方程,并计算振动频率。并计算振动频率。XOmx解:解: 确定平
8、衡位置确定平衡位置 mg=k l 取为原点取为原点 k=mg/ l 令向下有位移令向下有位移 x, 则则 f=mg-k( l +x)=-kx作谐振动作谐振动 设振动方程为设振动方程为)tcos(Ax0 s/rad.lgmk10098089 由初条件得由初条件得 ,)xv(arctg0000 mvxA09802020.)( 由由x0=Acos 0=-0.0980 cos 00 x0=Acos 0=0 , cos 0=0 0= /2 ,3 /2 v0=-A sin 0 , sin 0 0, 取取 0=3 /2 x=9.8 10-2cos(10t+3 /2) m对同一谐振动取不同的计时起点对同一谐振
9、动取不同的计时起点 不同,但不同,但 、A不变不变Hzlg6 . 1212 XOmx固有频率固有频率例例:如图所示,振动系统由一倔强系数为如图所示,振动系统由一倔强系数为k的的 轻弹簧、轻弹簧、一半径为一半径为R、转动惯量为、转动惯量为I的的 定滑轮和一质量为定滑轮和一质量为m的的 物体所组成。使物体略偏离平衡位置后放手,任其物体所组成。使物体略偏离平衡位置后放手,任其振动,试证物体作简谐振动,并求其周期振动,试证物体作简谐振动,并求其周期T.TmTmga2F moxkJR解:取位移轴解:取位移轴ox,m在平在平衡位置时,设弹簧伸长量衡位置时,设弹簧伸长量为为 l,则,则0 lkmg TmTm
10、ga2F moxkJR当当m有位移有位移x时时maTmg RaJRxlkT )(联立得联立得aRJRkx 2 0222 xRJmkdtxd物体作简谐振动物体作简谐振动 22RJmk kRJmT222 例例 已知某简谐振动的已知某简谐振动的 速度与时间的关系曲线如图速度与时间的关系曲线如图所示,试求其振动方程。所示,试求其振动方程。431.431. 715.715. 01)(st)(1 cmsv解:方法解:方法1100715cms.sinAv )tcos(Ax0 设振动方程为设振动方程为0020 cosAa1431 cmsvAm. 2143171500.Avsin 6560或或0000 cos,
11、a则则60 17151 cmsvt.2161 mvvAv )sin( 6116761或 01001)cos(,a 则则 6761 1143 s. cmvAm10143431 . 故振动方程为故振动方程为cmtx)cos(610 方法方法2: 用旋转矢量法辅助求解。用旋转矢量法辅助求解。)cos( tAx)cos()sin(2 tvtAvm1431 cmsAvm. 0 tst1 2 vov的旋转矢量的旋转矢量与与v轴夹角表轴夹角表示示t 时刻相位时刻相位2 t由图知由图知 322 6 11 s cmvAm10143431 . cmtx)cos(610 以弹簧振子为例以弹簧振子为例谐振动系统的能量
12、谐振动系统的能量=系统的系统的动能动能Ek+系统的系统的势能势能Ep某一时刻,谐振子速度为某一时刻,谐振子速度为v,位移为,位移为x)tsin(Av0 )tcos(Ax0 221mvEk )t(sinkA02221 221kxEp )t(coskA02221 谐振动的动能和势能是时间的周期性函数谐振动的动能和势能是时间的周期性函数4-3 简谐振动的能量简谐振动的能量动动能能221mvEk )t(sinkA02221 势势能能221kxEp )t(coskA02221 情况同动能。情况同动能。pppEEE,minmax0min kE2411kAdtETETttkk 2max21kAEk 机械能机
13、械能221kAEEEpk 简谐振动系统机械能守恒简谐振动系统机械能守恒xtTEEpokpEE EtEk(1/2)kA2由起始能量求振幅由起始能量求振幅kEkEA022 221kAE 实际振动系统实际振动系统系统沿系统沿x轴振动,势能函数为轴振动,势能函数为Ep(x),势能曲线存在,势能曲线存在极小值,该位置就是系统的稳定平衡位置。极小值,该位置就是系统的稳定平衡位置。在该位置(取在该位置(取x=0)附近将势能函数作级数展开)附近将势能函数作级数展开 20220210 x)dxEd(x)dxdE()(E)x(Expxppp微振动系统一般可以当作谐振动处理微振动系统一般可以当作谐振动处理00 dx
展开阅读全文