湘教版八年级数学下第2章四边形小结与复习ppt公开课优质教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《湘教版八年级数学下第2章四边形小结与复习ppt公开课优质教学课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湘教版 八年 级数 下第 四边形 小结 复习 ppt 公开 优质 教学 课件 下载 _八年级下册_湘教版(2024)_数学_初中
- 资源描述:
-
1、小结与复习八年级数学下(八年级数学下(XJXJ)教学课件教学课件第2章 四边形要点梳理考点讲练课堂小结课后作业一、多边形的内角和与外角和多边形的内角和等于(n-2) 180 多边形的外角和等于 360 正多边形每个内角的度数是正多边形每个外角的度数是(2) 180,nn360.n要点梳理要点梳理几 何 语 言文字叙述对边平行对边相等对角相等 AD=BC ,AB=DC. 四边形ABCD是平行四边形, A=C, B=D. 四边形ABCD是平行四边形, 二、平行四边形的性质对角线互相平分 四边形ABCD是平行四边形, OA=OC,OB=OD. 四边形ABCD是平行四边形, ADBC ,ABDC.AB
2、CDO几 何 语 言文字叙述两组对边相等一组对边平行且相等 四边形ABCD是平行四边形, AD=BC ,AB=DC. 四边形ABCD是平行四边形, AB=DC,ABDC.三、平行四边形的判定对角线互相平分 四边形ABCD是平行四边形, OA=OC,OB=OD.两组对边分别平行(定义) 四边形ABCD是平行四边形, ADBC ,ABDC.平行线之间的距离处处相等ABCDO1中心对称把一个图形绕着某一个点旋转_,如果它能与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点180四、中心对称2中心对称的特征中心对称的特征:在成中心对称的两个图形
3、中,对应点所连线段都经过 ,并且被对称中心_3.中心对称图形把一个图形绕某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心对称中心平分1.三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线.2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.五、三角形的中位线用符号语言表示DE是ABC的中位线DEBC,1.2DEBC 项目项目四边形四边形对边对边角角对角线对角线平行且相等平行且四边相等平行且四边相等四个角都是直角对角相等邻角互补四个角都是直角互相平分且相等互相垂直平分且相等,每一条对角线平分一组对角互相垂
4、直且平分,每一条对角线平分一组对角六、矩形、菱形、正方形的性质 四边形四边形条件条件定义:有一内角是直角的平行四边形 三个角是直角的四边形对角线相等的平行四边形定义:一组邻边相等的平行四边形 四条边都相等的四边形对角线互相垂直的平行四边形定义:一组邻边相等且有一个角是直角的平行四边形有一组邻边相等的矩形有一个角是直角的菱形七、矩形、菱形、正方形的判定方法考点一 多边形的内角和与外角和例1:已知一个多边形的每个外角都是其相邻内角度数的 ,求这个多边形的边数. 14解: 设此多边形的外角的度数为x,则内角的度数为4x, 则x+4x=180,解得 x=36.边数n=36036=10.考点讲练考点讲练
5、1.一个正多边形的每一个内角都等于120 ,则其边数是 .6【解析】 因为该多边形的每一个内角都等于120,所以它的每一个外角都等于60 .所以边数是6.归纳拓展 在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.针对训练考点二 平行四边形的性质例2 如图,在平行四边形ABCD中,下列结论中错误的是()A1=2 BBAD=BCD CAB=CD DAC=BC 【解析】A.四边形ABCD是平行四边形,ABCD,1=2,故A正确;B.四边形ABCD是平行四边形,BAD=BCD,故B正确;C.四边形AB
6、CD是平行四边形,AB=CD,故C正确;D方法总结 主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等.针对训练2.如图,已知 ABCD中,AE平分BAD,CF平分BCD,分别交BC、AD于E、F求证:AF=EC证明:四边形ABCD是平行四边形,B=D,AD=BC,AB=CD,BAD=BCD,(平行四边形的对角相等,对边相等)AE平分BAD,CF平分BCD,EAB= BAD,FCD= BCD,EAB= FCD,在ABE和CDF中 BD ABCD ABECDF,BE=DF EABFCD AD=BC AF=EC1212例3 如图,在 ABCD中,ODA=90,AC=10cm,
7、BD=6cm,则AD的长为()A4cm B5cm C6cm D8cm 【解析】四边形ABCD是平行四边形,AC=10cm,BD=6cmOA=OC= AC=5cm,OB=OD= BD=3cm,ODA=90,AD= =4cm121222OA -OD A方法总结 主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.【解析】在 ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,AO=CO=12cm,BO=19cm,AD=BC=28cm,BOC的周长是:BO+CO+BC=12+19+28=59(cm)针对训练3.如图,在 ABCD中,
8、对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则BOC的周长是()A45cm B59cm C62cm D90cm B考点三 平行四边形的判定例4 如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()AOA=OC,OB=OD BBAD=BCD,ABCD CADBC,AD=BC DAB=CD,AO=CO D 平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.方法总结针对训练4
展开阅读全文