湘教版九年级数学上册期末复习课件全套.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《湘教版九年级数学上册期末复习课件全套.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湘教版 九年级 数学 上册 期末 复习 课件 全套 下载 _九年级上册_湘教版(2024)_数学_初中
- 资源描述:
-
1、小结与复习第1章 反比例函数要点梳理考点讲练课堂小结课后作业九年级数学上(XJ) 教学课件1. 反比例函数的概念要点梳理要点梳理定义:形如_ (k为常数,k0) 的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数三种表达式方法: 或 xykx 或ykx1 (k0)防错提醒:(1)k0;(2)自变量x0;(3)函数y0.kyxkyx2. 反比例函数的图象和性质 (1) 反比例函数的图象:反比例函数 (k0)的 图象是 ,它既是轴对称图形又是中心 对称图形. 反比例函数的两条对称轴为直线 和 ; 对称中心是: .双曲线原点kyxy = xy=x(2) 反比例函数的性质 图象所在象限性
2、质(k0)k0一、三象限(x,y同号)在每个象限内,y 随 x 的增大而减小k0二、四象限(x,y异号)在每个象限内,y 随 x 的增大而增大kyxxyoxyo(3) 反比例函数比例系数 k 的几何意义 k 的几何意义:反比例函数图象上的点 (x,y) 具有两坐标之积 (xyk) 为常数这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数 |k|.规律:过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为常数 2k3. 反比例函数的应用 利用待定系数法确定反比例函数: 根据两变量之间的反比例关系,设 ; 代入图象上一个点的坐标
3、,即 x、y 的一对 对应值,求出 k 的值; 写出解析式.kyx 反比例函数与一次函数的图象的交点的求法求直线 yk1xb (k10) 和双曲线 (k20)的交点坐标就是解这两个函数解析式组成的方程组.2kyx 利用反比例函数相关知识解决实际问题过程:分析实际情境建立函数模型明确 数学问题注意:实际问题中的两个变量往往都只能取 非负值.考点讲练考点讲练考点一 反比例函数的概念针对训练1. 下列函数中哪些是正比例函数?哪些是反比例函数? y = 3x1 y = 2x2 y = 3x1yx23xy 1yx 13yx32yxkyx13132. 已知点 P(1,3) 在反比例函数 的图象上, 则 k
4、 的值是 ( ) A. 3B. 3 C. D. B3. 若 是反比例函数,则 a 的值为 ( ) A. 1 B. 1 C. 1 D. 任意实数221ayaxA例1 已知点 A(1,y1),B(2,y2),C(3,y3) 都在反比例函数 的图象上,则y1,y2,y3的大小关系是 ( )A. y3y1y2 B. y1y2y3C. y2y1y3 D. y3y2y1解析:方法分别把各点代入反比例函数求出y1,y2,y3的值,再比较出其大小即可方法:根据反比例函数的图象和性质比较考点二 反比例函数的图象和性质D 6yx方法总结:比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内
5、,不能按其性质比较,函数值的大小只能根据特征确定 已知点 A (x1,y1),B (x2,y2) (x10 x2)都在反比例函数 (k 2 时,y 与 x 的函数解析式;解:当 x 2时,y 与 x 成反比例函数关系, 设.kyx解得 k 8.由于点 (2,4) 在反比例函数的图象上,所以42k,即8.yxOy/毫克x/小时24(3) 若每毫升血液中的含药量不低于 2 毫克时治疗有 效,则服药一次,治疗疾病的有效时间是多长?解:当 0 x2 时,含药量不低于 2 毫克,即 2x2, 解得x1,1x2; 当 x2 时,含药量不低于 2 毫克,即 2,解得 x 4. 2 x 4.8x所以服药一次,
6、治疗疾病的有效时间是 123 (小时)Oy/毫克x/小时24 如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y,从加热开始计算的时间为x分钟据了解,该材料在加热过程中温度y与时间x成一次函数关系已知该材料在加热前的温度为4,加热一段时间使材料温度达到28时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间 x 成反比例函数关系,已知第 12 分钟时,材料温度是14针对训练Oy()x(min)1241428(1) 分别求出该材料加热和停止加热过程中 y 与 x 的函 数关系式(写出x的取值范围);Oy()x(min)1241428答案:y = 168x4x + 4 (0 x 6
7、), (x6). (2) 根据该食品制作要求,在材料温度不低于 12 的 这段时间内,需要对该材料进行特殊处理,那么 对该材料进行特殊处理的时间为多少分钟?解:当y =12时,y =4x+4,解得 x=2 由 ,解得x =14. 所以对该材料进行特殊 处理所用的时间为 142=12 (分钟)168yxOy()x(min)1241428课堂小结课堂小结反比例函数定义图象性质x,y 的取值范围增减性对称性k 的几何意义应用在实际生活中的应用在物理学科中的应用小结与复习第2章 一元二次方程九年级数学上(XJ) 教学课件要点梳理考点讲练课堂小结课后作业一、一元二次方程的基本概念1.定义: 只含有一个未
8、知数的整式方程,并且都可以化为 ax2bxc0(a,b,c为常数,a0)的形式,这样的方程叫做一元二次方程2.一般形式:ax2 bx c0 (a,b,c为常数,a0)要点梳理3.项数和系数: ax2 bx c0 (a,b,c为常数,a0)一次项: ax2 一次项系数:a二次项: bx 二次项系数:b常数项:c4.注意事项: (1)含有一个未知数; (2)未知数的最高次数为2; (3)二次项系数不为0; (4)整式方程 二、解一元二次方程的方法一元二次方程的解法适用的方程类型直接开平方法配方法公式法因式分解x2 + px + q = 0 (p2 - 4q 0)(x+m)2n(n 0)ax2 +
9、bx +c = 0(a0 , b2 - 4ac0)(x + m) (x + n)0各种一元二次方程的解法及使用类型三、一元二次方程在生活中的应用列方程解应用题的一般步骤:审设列解检答(1)审题:通过审题弄清已知量与未知量之间的数量关系(2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法(3)列方程:就是建立已知量与未知量之间的等量关系列方程这一环节最重要,决定着能否顺利解决实际问题(4)解方程:正确求出方程的解并注意检验其合理性(5)作答:即写出答语,遵循问什么答什么的原则写清答语考点一 一元二次方程的定义例1 若关于x的方程(m-1)x2+mx-1=0是一元二次方程,则m
10、的取值范围是( )A. m1 B. m=1 C. m1 D. m0解析 本题考查了一元二次方程的定义,即方程中必须保证有二次项(二次项系数不为0),因此它的系数m-10,即m1,故选A.A1.方程5x2-x-3=x2-3+x的二次项系数是 ,一次项系数是 ,常数项是 .4-20考点讲练针对训练考点二 一元二次方程的根的应用解析 根据一元二次方程根的定义可知将x=0代入原方程一定会使方程左右两边相等,故只要把x=0代入就可以得到以m为未知数的方程m2-1=0,解得m=1的值.这里应填-1.这种题的解题方法我们称之为“有根必代”.例2 若关于x的一元二次方程(m-1)x2+x+m2-1=0有一个根
11、为0,则m= .【易错提示】求出m值有两个1和-1,由于原方程是一元二次方程,所以1不符合,应引起注意.-1针对训练2. 一元二次方程x2+px-2=0的一个根为2,则p的值为 .-1【易错提示】(1)配方法的前提是二次项系数是1;(a-b)2与(a+b)2 要准确区分;(2)求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯解析 (1)配方法的关键是配上一次项系数一半的平方;(2)先求出方程x213x+36=0的两根,再根据三角形的三边关系定理,得到符合题意的边,进而求得三角形周长考点三 一元二次方程的解法例3 (1)用配方法解方程x2-2x-5=0时,原方程
12、应变为( ) A. (x-1)2=6 B.(x+2)2=9 C. (x+1)2=6 D.(x-2)2=9(2) (易错题)三角形两边长分别为3和6,第三边的长是方程x213x+36=0的根,则该三角形的周长为()A13 B 15 C18 D13或18AA3.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为( ) A. 16 B. 12 C. 16或12 D. 24A针对训练4.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).1-4-1.abc,公式 :,法22- 4= -4-41-1 =200.bac 2-42042
13、5.221bbacxa方程有两个不相等的实数根 1225,25.xx4.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).241.xx移得配法项:,方2224212 .xx配方,得225x 2=5x由 此 可 得,1225,25.xx考点四 一元二次方程的根的判别式的应用例4 已知关于x的一元二次方程x2-3m=4x有两个不相等的实数根,则m的取值范围是( )A. B. m2 C. m 0 D. m0,即42-41(-3m)=16+12m0,解得 ,故选A.43m 5.下列所给方程中,没有实数根的是( )A. x2+x=0 B. 5x2-4x-1=0 C.3x2-4x+
14、1=0 D. 4x2-5x+2=06.(开放题)若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是(写出一个即可)D0针对训练考点五 一元二次方程的根与系数的关系例5 已知一元二次方程x24x30的两根为m,n,则m2mnn2 25解析 根据根与系数的关系可知,m+n=4,mn=-3. m2mnn2m2+n2-mn=(m+n)2-3mn=42-3 (-3)=25.故填25.【重要变形】222121212()2;xxxxx x22121212()()4xxxxx x12121211xxxxxx针对训练 7. 已知方程2x2+4x-3=0的两根分别为x1和x2,则x12+x
15、22的值等于( )A. 7 B. -2 C. D.3232A考点六 一元二次方程的应用 例6 某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件. (1)若公司每天的销售价为x元,则每天的销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?市场销售问题解析 本题为销售中的利润问题,其基本本数量关系用表析分如下:设公司每天的销售价为x元.单件利润销售量(件)每星期利润(元)正常销售涨价销售432x-2032-2(x-24)1
16、50其等量关系是:总利润=单件利润销售量.解:(1)32-(x-24) 2=80-2x;(2)由题意可得(x-20)(80-2x)=150.解得 x1=25, x2=35.由题意x28, x=25,即售价应当为25元.【易错提示】销售量在正常销售的基础上进行减少.要注意验根.128例7 菜农小王种植的某种蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该种蔬菜滞销.小王为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.求平均每次下调的百分率是多少?解:设平均每次下调的百分率是x,根据题意得 5(1-x)2=3.2 解得 x1=1.8 (舍
17、去), x2=0.2=20%.答:平均每次下调的百分率是20%.平均变化率问题例8 为了响应市委政府提出的建设绿色家园的号召,我市某单位准备将院内一个长为30m,宽为20m的长方形空地,建成一个矩形的花园,要求在花园中修两条纵向平行和一条弯折的小道,剩余的地方种植花草,如图所示,要是种植花草的面积为532m2,,那么小道的宽度应为多少米?(所有小道的进出口的宽度相等,且每段小道为平行四边形)解:设小道进出口的宽为xcm (30-2x)(20-x)=532 x2-35x+34=0 x1=1 x2=34(舍去) 答:小道进出口的宽度应为1米. 解决有关面积问题时,除了对所学图形面积公式熟悉外,还要
18、会将不规则图形分割或组合成规则图形,并找出各部分图形面积之间的关系,再列方程求解.(注意:这里的横坚斜小路的的宽度都相等)平移转化方法总结一元二次方程一元二次方程的定义概念:整式方程; 一元; 二次.一般形式:ax2+bx+c=0 (a0)一元二次方程的解法直接开平方法配方法公式法224(40)2bbacxbaca 因式分解法根 的 判 别 式 及根与系数的关系根的判别式: =b2-4ac根与系数的关系1212bxxacxxa一元二次方程 的 应 用营销问题、平均变化率问题几何问题、数字问题课堂小结小结与复习第3章 图形的相似九年级数学上(XJ) 教学课件要点梳理考点讲练课堂小结课后作业 如果
19、选用一个长度单位量得两条线段a ,b 的长度分别为m ,n .那么两条线段的比 .nmbanmba或或: 四条线段a , b , c , d中,如果a与b的比等于c与d的比,那么这四条线段a , b , c , d叫做成比例线段,简称比例线段.dcba要点梳理要点梳理1. 线段的比和成比例线段的定义.bcaddcbaddcbbadcba合比性质)(0 ndbbandbmcanmdcba等比性质比例的更比性质 dbcadcba2. 比例的性质点C把线段AB分成两条线段AC和BC,如果ACBCABAC点C叫做线段AB的AC与AB(或BC与AC)的比叫做黄金比215 黄金分割黄金分割点黄金比3. 黄
20、金分割(1) 形状相同的图形(2) 相似多边形(3) 相似比:相似多边形对应边的比4. 图形的相似表象:大小不等,形状相同.实质:各对应角相等、各对应边成比例. 通过定义 平行于三角形一边的直线 三边成比例 两边成比例且夹角相等 两角分别相等 两直角三角形的斜边和一条直角边成比例(三个角分别相等,三条边成比例)5. 相似三角形的判定 对应角相等、对应边成比例 对应高、中线、角平分线的比等于相似比 周长比等于相似比 面积比等于相似比的平方6. 相似三角形的性质(1) 测高测量不能到达两点间的距离,常构造相似三角形求解.(不能直接使用皮尺或刻度尺量的)(不能直接测量的两点间的距离)测量不能到达顶部
21、的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决.(2) 测距7. 相似三角形的应用(1) 如果两个图形不仅相似,而且对应顶点的连 线相交于一点,那么这样的两个图形叫做位 似图形,这个点叫做位似中心. (这时的相似 比也称为位似比)8. 位似(2) 性质:位似图形上任意一对对应点到位似中心 的距离之比等于位似比;对应线段平行或者在 一条直线上.(3) 位似性质的应用:能将一个图形放大或缩小.ABGCEDFPBACDEFGABCDEFGABGCEDFP(4) 平面直角坐标系中的位似当位似图形在原点同侧时,其对应顶点的坐标的比为 k;当位似图形在原点两侧时,对应顶点的坐标的比为k.例1
22、 如图,ABC 是一块锐角三角形材料,边 BC120 mm,高 AD80 mm,要把它加工成正方形零件,使正方形的一边在 BC 上,其余两个顶点分别在 AB、AC 上,这个正方形零件的边长是多少?ABCDEFGH解:设正方形 EFHG 为加工成的 正方形零件,边 GH 在 BC 上,顶点 E、F 分别在AB、 AC上,ABC 的高 AD 与边 EF 相交于点 M,设正方形的 边长为 x mm.M考点讲练考点讲练考点一 相似三角形的判定和性质 EF/BC,AEFABC,又 AMADMD80 x,解得 x = 48.即这个正方形零件的边长是 48 mm. ABCDEFGHM8012080 xx,则
23、.EFAMBCAD证明:ABC是等边三角形, BACACB60, ACF120 CE是外角平分线, ACE60, BACACE 又ADBCDE, ABDCED例2 如图,ABC 是等边三角形,CE 是外角平分线,点 D 在 AC 上,连接 BD 并延长与 CE 交于点 E.(1) 求证:ABD CED;ABCDFE(2) 若 AB = 6,AD = 2CD,求 BE 的长.解:作 BMAC 于点 M. ACAB6, AMCM3. AD 2CD, CD2,AD4, MD1.ABCDFEM在 RtBDM 中,22633 3BM ,222 7BDBMMD,由(1) ABD CED得,BDADEDCD
24、,即2 72ED ,73 7.EDBEBDED,ABCDFEM针对训练1如图所示,当满足下列条件之一时,都可判定 ADC ACB(1) ; (2) ;(3) .ACD =BACB =ADCBCADADACACAB或 AC2 = AD AB2. ABC 的三边长分别为 5,12,13,与它相似的 DEF 的最小边长为 15,则 DEF 的其他两条 边长为 36 和 393. 如图,ABC 中,AB=9,AC=6,点 E 在 AB 上 且 AE=3,点 F 在 AC 上,连接 EF,若 AEF 与 ABC 相似,则 AF =.BCAE2 或 4.54. 如图,在 ABCD 中,点 E 在边 BC
25、上,BE : EC =1 : 2,连接 AE 交 BD 于点 F,则 BFE 的面积 与 DFA 的面积之比为 .1 : 9考点二 相似的应用例3 如图,某一时刻一根 2 m 长的竹竿 EF 的影长 GE 为 1.2 m,此时,小红测得一棵被风吹斜的柏树与地面成 30角,树顶端 B 在地面上的影子点 D 与 B 到垂直地面的落点 C 的距离是 3.6 m,求树 AB的长2m1.2m3.6m2m1.2m3.6m解:如图,CD3.6m,BDCFGE, BC6m.在 RtABC 中, A30, AB2BC12 m,即树长 AB 是 12 m.BCEFCDGE,即23.61.2BC,例4 星期天,小丽
展开阅读全文