电磁场电磁波静态场及其边值问题的解课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电磁场电磁波静态场及其边值问题的解课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 电磁波 静态 及其 边值问题 课件
- 资源描述:
-
1、第3章 电磁场与电磁波电磁场与电磁波1本章内容本章内容 3.1 静电场分析静电场分析 3.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析 3.3 恒定磁场分析恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理 3.5 镜像法镜像法 3.6 分离变量法分离变量法 静态电磁场:静态电磁场:场量不随时间变化,包括:场量不随时间变化,包括: 静电场、恒定电场和恒定磁场静电场、恒定电场和恒定磁场 时变情况下,电场和磁场相互关联,构成统一的电磁场时变情况下,电场和磁场相互关联,构成统一的电磁场 静态情况下,电场和磁场由各自的源激发,且相互独立静态情况下,电场和磁场
2、由各自的源激发,且相互独立 第3章 电磁场与电磁波电磁场与电磁波22. 边界条件边界条件0ED微分形式:微分形式:ED本构关系:本构关系:1. 基本方程基本方程0)()(21n21nEEDDeeS0ddlESDCSq积分形式:积分形式:0)(0)(21n21nEEDDee02t1tn2n1EEDDS或或2t1tn2n1EEDD或或3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件若分界面上不存在面电荷,即若分界面上不存在面电荷,即 ,则,则0S第3章 电磁场与电磁波电磁场与电磁波3介质介质2 2介质介质1 121212E1Ene212n21n12n2t1n1t21/tantanD
3、DEEEE 在静电平衡的情况下,导体内部的电场为在静电平衡的情况下,导体内部的电场为0,则导体表面的,则导体表面的边界条件为边界条件为 0nnEDeeS0tnEDS或或 场矢量的折射关系场矢量的折射关系 导体表面的边界条件导体表面的边界条件第3章 电磁场与电磁波电磁场与电磁波40E由由即即静电场可以用一个标量函数的梯度来表示,静电场可以用一个标量函数的梯度来表示,标量函数标量函数 称为静称为静电场的标量电位或简称电位。电场的标量电位或简称电位。1. 电位函数的定义电位函数的定义E3.1.2 电位函数电位函数第3章 电磁场与电磁波电磁场与电磁波52. 电位的表达式电位的表达式对于连续的体分布电荷
4、,由对于连续的体分布电荷,由同理得,面电荷的电位:同理得,面电荷的电位: 1( )( )d4VrrVCR故得故得点电荷的电位:点电荷的电位:( )4qrCR( )1( )d4lCrrlCRd)1)(41d)1()(41d)(41)(3VRrVRrVRRrrEVVV3)1(RRR线电荷的电位:线电荷的电位:rrRCSRrrSSd)(41)(3第3章 电磁场与电磁波电磁场与电磁波63. 电位差电位差两端点乘两端点乘 ,则有,则有ldE将将d)ddd(ddzyyyxxllE上式两边从点上式两边从点P到点到点Q沿任意路径进行积分,得沿任意路径进行积分,得关于电位差的说明关于电位差的说明 P、Q 两点间
5、的电位差等于电场力将单位正电荷从两点间的电位差等于电场力将单位正电荷从P点移至点移至Q 点点 所做的功,电场力使单位正电荷由高电位处移到低电位处。所做的功,电场力使单位正电荷由高电位处移到低电位处。 电位差也称为电压,可用电位差也称为电压,可用U 表示。表示。 电位差有确定值,只与首尾两点位置有关,与积分路径无关。电位差有确定值,只与首尾两点位置有关,与积分路径无关。)()(ddQPlEQPQPP、Q 两点间的电位差两点间的电位差电场力做电场力做的功的功第3章 电磁场与电磁波电磁场与电磁波7 静电位不惟一,可以相差一个常数,即静电位不惟一,可以相差一个常数,即)(CC选参考点选参考点令参考点电
6、位为零令参考点电位为零电位确定值电位确定值( (电位差电位差) )两点间电位差有定值两点间电位差有定值 选择电位参考点的原则选择电位参考点的原则 应使电位表达式有意义。应使电位表达式有意义。 应使电位表达式最简单。若电荷分布在有限区域,通常取无应使电位表达式最简单。若电荷分布在有限区域,通常取无 限远作电位参考点。限远作电位参考点。 同一个问题只能有一个参考点。同一个问题只能有一个参考点。4. 电位参考点电位参考点 为使空间各点电位具有确定值,可以选定空间某一点作为参考为使空间各点电位具有确定值,可以选定空间某一点作为参考点,且令参考点的电位为零,由于空间各点与参考点的电位差为确点,且令参考点
7、的电位为零,由于空间各点与参考点的电位差为确定值,所以该点的电位也就具有确定值,即定值,所以该点的电位也就具有确定值,即第3章 电磁场与电磁波电磁场与电磁波8在均匀介质中,有在均匀介质中,有5. 电位的微分方程电位的微分方程在无源区域,在无源区域,0EED202标量泊松方程标量泊松方程拉普拉斯方程拉普拉斯方程第3章 电磁场与电磁波电磁场与电磁波96. 静电位的边界条件静电位的边界条件 设设P1和和P2是介质分界面两侧紧贴界面的相邻两点,其电位分是介质分界面两侧紧贴界面的相邻两点,其电位分别为别为1和和2。当两点间距离当两点间距离l0时时 导体表面上电位的边界条件:导体表面上电位的边界条件:0d
8、lim21021PPlElSe)(21nDDD由由 和和12媒质媒质2媒质媒质121l2P1P 若介质分界面上无自由电荷,即若介质分界面上无自由电荷,即0Snn1122常数,常数,SnSnn112221第3章 电磁场与电磁波电磁场与电磁波10 电容是导体系统的一种基本属性,是描述导体系统电容是导体系统的一种基本属性,是描述导体系统 储存电荷储存电荷能力的物理量。能力的物理量。 孤立导体的电容定义为所带电量孤立导体的电容定义为所带电量q与其电位与其电位 的比值,即的比值,即qC 电容电容 孤立导体的电容孤立导体的电容 两个带等量异号电荷(两个带等量异号电荷( q)的的 导体组成的电容器,其电容为
9、导体组成的电容器,其电容为12qqCU 电容的大小只与导体系统的几何尺寸、形状和及周围电介质电容的大小只与导体系统的几何尺寸、形状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。的特性参数有关,而与导体的带电量和电位无关。E02U1qq第3章 电磁场与电磁波电磁场与电磁波11 如果充电过程进行得足够缓慢,就不会有能量辐射,充电过如果充电过程进行得足够缓慢,就不会有能量辐射,充电过程中外加电源所做的总功将全部转换成电场能量,或者说电场能程中外加电源所做的总功将全部转换成电场能量,或者说电场能量就等于外加电源在此电场建立过程中所做的总功。量就等于外加电源在此电场建立过程中所做的总功。静
10、电场能量来源于建立电荷系统的过程中外源提供的能量。静电场能量来源于建立电荷系统的过程中外源提供的能量。静电场最基本的特征是对电荷有作用力,这表明静电场具有静电场最基本的特征是对电荷有作用力,这表明静电场具有 能量。能量。 任何形式的带电系统,都要经过从没有电荷分布到某个最终任何形式的带电系统,都要经过从没有电荷分布到某个最终电荷分布的建立电荷分布的建立(或充电或充电)过程。在此过程中,外加电源必须克服过程。在此过程中,外加电源必须克服电荷之间的相互作用力而做功。电荷之间的相互作用力而做功。3.1.4 静电场的能量静电场的能量 第3章 电磁场与电磁波电磁场与电磁波121. 静电场的能量静电场的能
11、量 设系统从零开始充电,最终带电量为设系统从零开始充电,最终带电量为 q 、电位为、电位为 。 充电过程中某一时刻的电荷量为充电过程中某一时刻的电荷量为q 、电位为、电位为 。(01) 当当增加为增加为(+ d)时,外电源做功为时,外电源做功为: (q d)。 对对从从0 到到 1 积分,即得到外电源所做的总功为积分,即得到外电源所做的总功为101d2qq 根据能量守恒定律,此功也就是电量为根据能量守恒定律,此功也就是电量为 q 的带电体具有的电的带电体具有的电场能量场能量We ,即,即 对于电荷体密度为对于电荷体密度为的体分布电荷,体积元的体分布电荷,体积元dV中的电荷中的电荷dV具具有的电
12、场能量为有的电场能量为qW21eVWd21de第3章 电磁场与电磁波电磁场与电磁波13故体分布电荷的电场能量为故体分布电荷的电场能量为对于面分布电荷,对于面分布电荷,电场能量为电场能量为VVWd21eSSSWd21e第3章 电磁场与电磁波电磁场与电磁波142. 电场能量密度电场能量密度 从场的观点来看,静电场的能量分布于电场所在的整个空间。从场的观点来看,静电场的能量分布于电场所在的整个空间。EDw21e电场能量密度:电场能量密度:e1d2VWD E V电场的总能量:电场的总能量:积分区域为电场积分区域为电场所在的整个空间所在的整个空间2e111ddd222VVVWD E VE E VEV 对
13、于线性、各向同性介质,则有对于线性、各向同性介质,则有2e111222wD EE EE 第3章 电磁场与电磁波电磁场与电磁波15 例例3.1.7 半径为半径为a 的球形空间内均匀分布有电荷体密度为的球形空间内均匀分布有电荷体密度为的电的电荷,试求静电场能量。荷,试求静电场能量。5202420622020220154)d49d49(21arrrarrraa10()3rrEera 解解: 方法一方法一,利用利用 计算计算 VVEDWd21e 根据高斯定理求得电场强度根据高斯定理求得电场强度 3220()3raEerar故故VEVEVEDWVVVd21d21d2121220210e第3章 电磁场与电
14、磁波电磁场与电磁波16)()3(2d3d3dd2202030211arrarrarrrErEaraara 方法二方法二:利用利用 计算计算 VVWd21e 先求出电位分布先求出电位分布 故故5202022021e154d4)3(221d21arrraVWaV第3章 电磁场与电磁波电磁场与电磁波173.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析 本节内容本节内容 3.2.1 恒定电场的基本方程和边界条件恒定电场的基本方程和边界条件 3.2.2 恒定电场与静电场的比拟恒定电场与静电场的比拟 3.2.3 漏电导漏电导第3章 电磁场与电磁波电磁场与电磁波18 由由J J E E 可知,导体中
15、若存在恒定电流,则必有维持该电流可知,导体中若存在恒定电流,则必有维持该电流的电场,虽然导体中产生电场的电荷作定向运动,但导体中的电的电场,虽然导体中产生电场的电荷作定向运动,但导体中的电荷分布是一种不随时间变化的恒定分布,这种恒定分布电荷产生荷分布是一种不随时间变化的恒定分布,这种恒定分布电荷产生的电场称为恒定电场。的电场称为恒定电场。 恒定电场与静电场的重要区别:恒定电场与静电场的重要区别: (1 1)恒定电场可以存在于导体内部。)恒定电场可以存在于导体内部。 (2 2)恒定电场中有电场能量的损耗)恒定电场中有电场能量的损耗, ,要维持导体中的恒定电要维持导体中的恒定电流,就必须有外加电源
16、来不断补充被损耗的电场能量。流,就必须有外加电源来不断补充被损耗的电场能量。 恒定电场和静电场都是有源无旋场,具有相同的性质。恒定电场和静电场都是有源无旋场,具有相同的性质。 3.2.1 恒定电场的基本方程和边界条件恒定电场的基本方程和边界条件第3章 电磁场与电磁波电磁场与电磁波19EJ0d0dlESJCS00EJ1. 基本方程基本方程 恒定电场的基本方程为恒定电场的基本方程为微分形式:微分形式:积分形式:积分形式:)(rJ 恒定电场的基本场矢量是电流密度恒定电场的基本场矢量是电流密度 和电场强度和电场强度)(rE 线性各向同性导电媒质的本构关系线性各向同性导电媒质的本构关系0)(EEJ 恒定
17、电场的电位函数恒定电场的电位函数0E0 EE0E由由0)(02若媒质是均匀的,则若媒质是均匀的,则 均匀导电媒质中均匀导电媒质中没有体分布电荷没有体分布电荷第3章 电磁场与电磁波电磁场与电磁波202. 恒定电场的边界条件恒定电场的边界条件0d lEC0dSJS媒质媒质2 2媒质媒质1 121212E1Ene0)(21nJJe0)(21nEEe 场矢量的边界条件场矢量的边界条件2nn1JJ即即2t1tEE即即 导电媒质分界面上的电荷面密度导电媒质分界面上的电荷面密度n2211222111n21n)()()(JeeSJJDD场矢量的折射关系场矢量的折射关系212n21n12n2t1n1t21/ta
18、ntanJJEEEE第3章 电磁场与电磁波电磁场与电磁波21 电位的边界条件电位的边界条件nn221121, 恒定电场同时存在于导体内部和外部,在导体表面上的电场恒定电场同时存在于导体内部和外部,在导体表面上的电场 既有法向分量又有切向分量,电场并不垂直于导体表面,因既有法向分量又有切向分量,电场并不垂直于导体表面,因 而导体表面不是等位面;而导体表面不是等位面; 说明说明:b11、a第3章 电磁场与电磁波电磁场与电磁波22媒质媒质2 2媒质媒质1 12122E1E)(12媒质媒质2 2媒质媒质1 12012Ene1E)0(1 如如2 1、且、且 290,则则 10, 即电场线近似垂直于良导体
19、表面。即电场线近似垂直于良导体表面。 此时,良导体表面可近似地看作为此时,良导体表面可近似地看作为 等位面;等位面; 若媒质若媒质1为理想介质为理想介质,即即 10,则则 J1=0,故故J2n= 0 且且 E2n= 0,即导体,即导体 中的电流和电场与分界面平行中的电流和电场与分界面平行。第3章 电磁场与电磁波电磁场与电磁波233.2.2 恒定电场与静电场的比拟恒定电场与静电场的比拟 如果两种场,在一定条件下,场方程有相同的形式,边界如果两种场,在一定条件下,场方程有相同的形式,边界形状相同,边界条件等效,则其解也必有相同的形式,求解这形状相同,边界条件等效,则其解也必有相同的形式,求解这两种
20、场分布必然是同一个数学问题。只需求出一种场的解,就两种场分布必然是同一个数学问题。只需求出一种场的解,就可以用对应的物理量作替换而得到另一种场的解。这种求解场可以用对应的物理量作替换而得到另一种场的解。这种求解场的方法称为比拟法。的方法称为比拟法。D0U静电场静电场J0U恒定电场恒定电场第3章 电磁场与电磁波电磁场与电磁波24恒定电场与静电场的比拟恒定电场与静电场的比拟基本方程基本方程ED,EEJ0202n2n1t2t1 DDEEn2n1t2t1 JJEE静电场(静电场( 区域)区域) 00d, 0dlESJCS0, 0EJ,E0,0DEnn221121 ,nn221121 ,本构关系本构关系
21、位函数位函数边界条件边界条件恒定电场(电源外)恒定电场(电源外)对应物理量对应物理量静电场静电场EEDJqI恒定电场恒定电场GC0d, 0dlESDCS第3章 电磁场与电磁波电磁场与电磁波25 工程上,常在电容器两极板之间、同轴电缆的芯线与外壳之工程上,常在电容器两极板之间、同轴电缆的芯线与外壳之间,填充不导电的材料作电绝缘。这些绝缘材料的电导率远远小间,填充不导电的材料作电绝缘。这些绝缘材料的电导率远远小于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压U 时,必定会有微小的漏电流时,必定会有微小的漏电流 J 存在。存在。 漏电流
22、与电压之比为漏电导,即漏电流与电压之比为漏电导,即UIG 其倒数称为绝缘电阻,即其倒数称为绝缘电阻,即IUGR13.2.3 漏电导漏电导第3章 电磁场与电磁波电磁场与电磁波26 例例3.2.3 求同轴电缆的绝缘电阻。设内外的半径分别为求同轴电缆的绝缘电阻。设内外的半径分别为a 、b,长度为长度为l ,其间媒质的电导率为,其间媒质的电导率为、介电常数为、介电常数为。解解:直接用恒定电场的计算方法直接用恒定电场的计算方法电导电导)/ln(2ablUIG绝缘电阻绝缘电阻ablGRln211baablIlIUln2d2dlElba则则IlIJ2lIJE2设由内导体流向外导体的电流为设由内导体流向外导体
23、的电流为I 。第3章 电磁场与电磁波电磁场与电磁波27本节内容本节内容 3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位 3.3.3 电感电感 3.3.4 恒定磁场的能量恒定磁场的能量 3.3.5 磁场力磁场力3.3 恒定磁场分析恒定磁场分析第3章 电磁场与电磁波电磁场与电磁波280HJB微分形式微分形式: :0dddSSCSBSJlH1. 基本方程基本方程BH2. 边界条件边界条件本构关系:本构关系:SJHHeBBe)(0)(21n21nSJHHBBt2t12n1n0或或若分界面上不存在面电流,即若分界
24、面上不存在面电流,即JS0,则,则积分形式积分形式: :0)(0)(21n21nHHeBBe或或002tt1n2n1HHBB3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件第3章 电磁场与电磁波电磁场与电磁波29 矢量磁位的定义矢量磁位的定义 磁矢位的任意性磁矢位的任意性 与电位一样,磁矢位也不是惟一确定的,它加上任意一个标与电位一样,磁矢位也不是惟一确定的,它加上任意一个标量量 的梯度以后,仍然表示同一个磁场,即的梯度以后,仍然表示同一个磁场,即由由AA 0BBA 即恒定磁场可以用一个矢量函数的旋度来表示。即恒定磁场可以用一个矢量函数的旋度来表示。 磁矢位的任意性是因为只
25、规定了它的旋度,没有规定其散度磁矢位的任意性是因为只规定了它的旋度,没有规定其散度造成的。为了得到确定的造成的。为了得到确定的A,可以对,可以对A的散度加以限制,在恒定磁的散度加以限制,在恒定磁场中通常规定,并称为库仑规范。场中通常规定,并称为库仑规范。0A()AAA 1. 恒定磁场的矢量磁位恒定磁场的矢量磁位矢量磁位或称磁矢位矢量磁位或称磁矢位 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位第3章 电磁场与电磁波电磁场与电磁波30 磁矢位的微分方程磁矢位的微分方程在无源区:在无源区:AB0A0J JA202 A矢量泊松方程矢量泊松方程矢量拉普拉斯方程矢量拉普拉斯方程AJ
展开阅读全文