水平井钻井技术介绍课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《水平井钻井技术介绍课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水平 钻井 技术 介绍 课件
- 资源描述:
-
1、水平井钻井技术 第一章第一章 绪绪 论论 水平井钻井技术是20世纪80年代国际石油界迅速发展并日臻完善的一项综合性配套技术,它包括水平井油藏工程和优化设计技术,水平井井眼轨道控制技术,水平井钻井液与油层保护技术,水平井测井技术和水平井完井技术等一系列重要技术环节,综合了多种学科的一些先进技术成果。由于水平钻井主要是以提高油气产量或提高油气采收率为根本目标,已经投产的水平井绝大多数带来了十分巨大的经济效益,因此水平井技术被誉为石油工业发展过程中的一项重大突破。第一节第一节 水平井的分类及特点水平井的分类及特点水平井是最大井斜角保持在90左右,并在目的层中维持一定长度的水平井段的特殊井。水平钻井技
2、术是常规定向井钻井技术的延伸和发展。目前,水平井已形成3种基本类型,如图11所示。 (1)长半径水平井(又称小曲率水平井):其造斜井段的设计造斜率K630m,相应的曲率半径R286.5m。 (2)中半径水平井(又称中曲率水平井);其造斜井段的设计造斜率K=(6 20)30,相应的曲率半径R=286.586m。 水平井剖平面示意图 (3)短半径水平井(又称大曲率水平井):其造斜井段的设计造斜率K(310)m,相应的曲率半径R19.15.73m。上述3种基本类型水平井的丁艺特点和各自的主要优缺点分别列于表ll和表12。第二节第二节 水平井在油气勘探开发中的应用水平井在油气勘探开发中的应用和效益和效
3、益 大斜度井、水平井和多井底井技术的应用都有一个共同的目的这就是降低综合成本和提高油层的开采量。 对于同一尺寸的井眼,直井由于出油(气)面积比较小、其几何条件所提供的效率就比较低而水平井几何条件所提供的效率达到最高,如图12和图13所示。 大斜度井(井斜角大于60的井)主要适用于层状油藏。多井底井(在一个井眼内钻几口井)主要用于很厚的垂直渗透油层(具有低孔隙率和垂直裂缝的块状石灰岩)或者短半径横向引流类的井。 1天然垂直裂缝天然垂直裂缝 在垂直裂缝油藏中,油气完全处在裂缝中,裂缝之间的非生产底层一般为660m厚,所以垂直井可能只钻到一个产层也可能一个产层也钻不到,而水平井可以与产层垂直相交,横
4、向钻穿若干个产层裂缝这样就比垂直井的开采量要高得多。 2水锥和气锥水锥和气锥 1)水锥水锥 水平井可以在油层的中上部造斜,然后在生产层中钻一定长度的水平井段。水平井不仅减少水锥的可能性如图14所示。2)气锥气锥 水平井的井眼全部在油砂中有助于避免气锥问题。并可以控制采收率,不致于使气锥的压力梯度过高。水平井成功地减少了水锥、气锥等有害影响。 3低渗透性地层低渗透性地层 由于固井的影响,石灰岩油藏的孔隙度和渗透率即使在短距离内也可能有相当大的变化。与此相似砂岩油藏中内部岩层构造倾角的变化也能造成孔隙度和渗透率的变化,这些油藏水平相交可以提高产量。4薄油层薄油层 对于薄油层通过在油层的上下边界之间
5、钻个水平井段可以大大地增加井与油层的接触表面积。对于厚的油层则可以优先选择成本较低的直井完井方法,或者考虑应用多底井的可能性(见图15)。 5不规则地层不规则地层 平钻井已经成功地应用产开发不规则油藏。这种含油地层互不关联,孤立存在,地震测量也难以指定其准确位置所以钻直井或常规定向井很难钻到这类油藏。然而短半径水平井可以从现有直井中接近油藏的位置进行造斜并且可以避免可能的水锥和气锥问题。6溶解采矿溶解采矿 很多矿藏当今采用溶解采矿法进行开采,水平井可以提高这些矿藏开采的经济效益。7边际构造、丛式井和加密井边际构造、丛式井和加密井 水平井可能适用于边际构造,为了在短期内增加总的开采量可以钻从式水
6、平井组(见图16)。 8层状油层层状油层 水平井采油获得的产量增量取决于油层垂直渗透率的值。在垂直与水平渗透率之比值较低的情况下,如水平纹理的油层,大斜度井的效率要远高于水平井的效率。如图17。 9重油产层重油产层在重油产层中、水平钻井技术具有提高产量的能力。横穿油藏的水平井既可以作为生产井也可以作为注水井。水平井具有如下的优点和应用: (1) 开发薄油藏油田,提高单井产量。水平井可较直井和常规定向井大大增加泄油面积,从而提高薄油层中的油产量,使薄油层具有开采价值。 (2) 开发低渗透油藏,提高采收率。 (3) 开发重油稠油油藏。水平井除扩大泄油面积外,如进行热采,还有利于热线的均匀推进。 (
7、4) 开发以垂直裂缝为主的油藏。水平井钻遇垂直裂缝的机遇较直井大得多。 (5) 开发底水和气顶活跃的油藏。水平井可以减缓水锥、气锥的推进速度,延长油井寿命。 (6) 利用老井采出残余油。在停产老井中侧钻水平井较钻调整井(加密井)要节约费用。 (7) 用丛式水平井扩大控制面积,减少丛式井的平台数量。 (8) 用水平井注水注汽有利于水线汽线的均匀推进。(9) 用水平探井可钻穿多层陡峭的产层,往往相当于多口直井的勘探效果。 (10) 有利于更好地了解目的层的性质。水平井在目的层中的井段较直井长得多,可以更多、更好地收集目的层的各种持性资料。 (11)有利于环境保护;一口水平井可以替代一口到几口直井大
8、量减少钻井过程中的排污量。钻过水平井并取得显著经济效益的油气藏如:(1)薄砂岩油藏。(2)有底水、气顶的砂岩油层。(3)裂缝性或喀斯特洞穴型碳酸盐岩油气藏。(4)有垂直裂缝带的页岩油藏。(5)浅层未胶结砂岩沥青型稠油油藏o(6)浅层岩礁型稠油油藏。(7)储量很少的海上油藏。第三节第三节 国外水平井的发展概况和技术现状国外水平井的发展概况和技术现状 随着被誉为国际钻井3大新技术的MWD(随钻测量仪)、技术的进步,使每年新钻成的水平井数量成倍增加,1989年这一年钻成的中长半径水平井的总数为257口(参见图18)。 第二章第二章 水平井设计水平井设计第一节第一节 水平井设计中的几个问题水平井设计中
9、的几个问题 水平井的设计思路和基本方法是: 目的层油藏地质设计 产量预测一完井方法选择 一 水平段设计 一 目的层以上的剖面设计 一 套管程序设计 一 井下工具、测量方法选择 一 水力参数设计与地面设备选择 一 经济评价。水平井设计是一个“先地下后地面,自下而上综合考虑,反复寻优”的过程。 图21是国外某公司给出的水平井设计流程示意图,大体反映了水平井设计过程的基本特征。 一、一、 油藏描述和精细地质设计油藏描述和精细地质设计1对油藏进行综合的精细描述,建立水平井目的层地质模型。(1)目的层砂体预测。通过地震资料建立砂体判别模式,预测砂体分布;开展理论分析,定量确定目的层砂岩分布和孔隙度分布;
10、划分沉积微相,预测砂体的平面分布,通过精细小层对比,分析砂岩的结构和平面变化;应用地层倾角的测井资料,预测砂体的增厚方向和延伸方向等。(2)油层顶部预测。油层顶界误差将给水平井的轨道控制带来困难,大的油顶误差会造成控制方案的改变甚至可能造成失控。 有关工作主要是:利用油田的开发资料,研究目的层砂体沉积时的顶面形态,校正和确认目的层及其以上的不同油层顶面构造,确定目的层厚度和油层顶面的深度数据。()描述裂缝的发育特征。(4)描述储层内部物性夹层的分布特征。2以地质模型为依据,应用油藏数值模拟技术,优化设计水平井井位参数1)确定水平井井位布置原则2)确定水平段长度和井眼直径的设计原则从理论上讲,水
11、平段越长,井眼直径越大,水平井的采油指数(PI)就越大,产量就越高。仅对井眼直径的选值,还要综合考虑水平段的完井设计、全井的套管程序以及钻机能力等多种因素才能确定。对水平段长度,应根据砂体模型,泄油半径大小,具体的油藏开发设计要求和钻井成本,钻井和完井的工艺约束等因素综合考虑确定 3)确定水平段方向确定水平段方向 确定水平段方向的基本原则就是如何获得最大的产能。对于靠天然能量开采的油藏,水平段方向最好与天然裂缝方向垂直,尽量多地穿透裂缝;而对注水开发的低渗透砂岩油藏,应综合考虑砂岩形态、天然裂缝方向、人工裂缝方向等因素,并结合油藏工程研究来确定水平段方向, 二、水平井完井方法的选择二、水平井完
12、井方法的选择目前的水平井完井可分为如下4种基本方法:(1) 裸眼完井。(2)筛孔/割缝衬管完井。(3)筛孔/割缝衬管带管外封隔器完井。(4)衬(套)管注水泥固井射孔完井。此外还有砾石预充填完井、砾石充填完井和其他可进行选择性洗井及增产措施的选择性完井方法。 4种完井方法的比较1)裸眼完井法(1)费用低。(2)没有产量损失。(3)使用裸眼封隔器可以进行增产作业。其缺点是: (1)可能造成井眼堵塞甚至造成部分乃至全部井段报废。 (2)生产控制性差。 (3)修井作业困难。 (4)废弃部分生产段困难。 2)筛孔/割缝衬管完井法 其优点是: (1)割缝或筛孔可保持油层与井眼间的可靠通道。 (2)若割缝或
13、筛孔尺寸适当可部分控制出砂。 (3)在松软地层常用绕丝筛管控制出砂。 (4)砾石充填筛管可以有效进行砂控。 其缺点是: (1)不能控制生产。 (2)废弃部分生产段困难。 (3)不能进行生产测井。 3)筛管/割缝衬管带管外封隔器完井法 其优点是: (1)可在石灰岩裂缝地层中实现层段的隔离。 (2)可隔绝水层和气层。 (3)可达到部分准确的生产测井。 (4)可完成部分选择性的增产作业。其缺点是由于管外封隔器同割缝衬管一道在裸眼井中使用,很难预测和保证密封效果。 4)衬(套)管注水泥固井射孔完井法其优点是: (1)在任何油层都可以有效地达到封隔作用。 (2)在整个生产期间任何时候都可以达到对原生水和
14、气的封隔。 (3)可以进行准确的生产测井。 (4)能够完成选择性的增产作业或选择性生产。 其缺点是水平井衬(套)管固井和射孔费用高,固井质量也较难保证。 2.水平井完井方法的选择原则 选择水平井的完井方法时必须考虑以下几点: (1)生产(包括产量、生产模式)。 (2)生产测井。 (3)生产控制。 (4)预期的修井要求。 (5)生产井注水、注气量的控制。 (6)生产层段的废弃。 (7)曲率半径对完井方法的限制。 从曲率半径方面而言,短半径水平井一般只能用裸眼或筛孔剧缝衬管的完井方法,而中、长半径水平井则对4种完井方法并无限制。三、水平井靶区参数设计三、水平井靶区参数设计 水平井的靶区一般是一个包
15、含水平段井眼轨道的长方体或拟柱体。靶区参数主要包括水平段的井径、方位、长度、水平段井斜角、水平段在油层中的垂向位置以及水平井的靶区形状和尺寸即水平段的允许偏差范围。 1水平段长度设计设计方法是:根据油井产量要求,按照所期望的产量比值(即水平井日产量是邻近直井日产是的几倍),来求解满足钻井工艺方面的约束条件的最佳水平段长度值。这些约束主要是指包括钻柱摩阻、钻机能力、井眼稳定周期及油层污染状况等因素的限制。 水平段井斜角确定确定水平段井斜角的设计值一般应综合考虑地层倾角、地层走向、油层厚度以及具体的勘探或开发要求。我国对石油水平井的水平段井斜角设计值的要求一般是不小于86。在通常情况下,水平段与油
16、层面平行,其井斜角为 式中 水平段设计井斜角,(); 油层地层倾角,();依井眼方向与地层倾向的关系而定:若沿地层上倾方向,取“+”;若沿地层下倾方向,取“”。3水平段的垂向位置的确定 油藏性质决定了水平段的设计位置。对于无底水、无气顶的泊藏,水平段宜置于油层中部;对于有底水或气顶存在的油藏,设计原则是水平段应尽量远离油水或气水界面;对于同时存在底水和气顶的油藏,应以尽量减小水锥和气锥速度为原则来确定水平段位置;对于重油油藏,为提高采收率,水平段应在油层下部,以便使密度较大的稠油借助重力流入水平井眼。4水平井靶体设计 水平井的靶体设计实质上就是要确定水平段位置的允许偏差范围,它将受两方面的限制
17、:其一严格控制允许偏差有利于把井眼轨道控制在最有利的地质储层内;90aHaHaH其二,对允许偏差限制过严会加大实际钻井中井眼控制的难度,加大钻井成本。因此,在进行靶体设计时应综合考虑所钻油层的地质特性,钻井技术水平和经济成本等因素,在满足钻井目的的前提下,尽量放宽允许偏差,以降低控制难度和钻井成本。 靶体的垂向允许偏差即靶体的高度,它与油层厚度及油藏形态有关,必须等于或小于油层厚度。靶体的上下边界应避开气顶和底水的影响,保证把水平段的井眼轨道限定在有利的范围内。一般来说,靶体上下边界对称于水平段的设计位置,但在有特殊要求的情况下并不必须对称即上、下偏差可以是不等值的。 靶体的宽度(即横向允许偏
18、差)一般是其高度(即垂向允许偏差)的几倍(多为5倍)靶体的端面称为靶窗,后端面称为靶底,常见的靶体是以矩形靶窗为端面的长方体,或拟长方体,如图22所示。加大靶窗的宽度,有利于降低着陆控制即中靶的难度。有时在地质设计允许的前提下,加大长方靶体两侧的方位允差,以减少在水平钻进时纠方位的麻烦,因而得到的是靶底大于靶窗的棱台形靶体。第二节第二节 水平井的剖面设计水平井的剖面设计1剖面设计要求剖面设计要求 可行的最简单造斜曲线是从造斜点井斜接近零度时开始,以单一连续的弧钻进到90井斜的单一均匀曲线。如果马达造斜钻具增斜特性的变化小于水平目标区的容许误差、那么这一设计便是最佳设计。 但是,大多数马达造斜钻
19、具增斜特性的变化性和误差都大大地超过水平目标区的允许误差。为了补偿这些变化性和误差,就有必要在造斜井段设计冲加一段调节用的斜直井段。 设计造斜曲线首先要确定水平目标区。水平目标区有两种基本类型: 确定垂直深度的目标区; 确定在油藏中所在构造位置的目标区。按照水平井段靶区设计的不同要求,水平井井段的形状可分为以下几类(见图23):倾斜靶区剖面;垂直靶区剖面;蛇形剖面;造位置靶区剖面。造斜曲线设计必须考虑到以下问题:避开复杂地层造斜;曲线末端即造斜结束时的位移最小;造斜井段的长度最短;有一个调节井段以应付不理想造斜率的情况;利用造斜井段的构造标记调整最终目标区的深度;在目标区的容限之内;轨迹要能够
20、保证完成全部水平井段的钻进;必须是允许使用所有必需的采油工具和设备的可完成井眼。 某些特定水平井的最佳造斜率取决于钻到目标区所需要的方向控制能力,以及避开在复杂地层造斜的造斜井段高度。 如果只考虑造斜井段的钻进那么最佳井眼曲率是可以达到的最高曲率。由于井眼曲率还影响着所有的后续作业,所以需要对高曲率的优点和其对以后作业的影响做出平衡。表21为应该考虑的若干曲率极限。 2.单曲率单曲率斜直剖面的设计斜直剖面的设计 单曲率斜直剖面是最老、应用最为广泛的造斜曲线见图24。这类剖面的特点是,整个曲线由三段组成,造斜由上、下两个造斜率相同的造斜井段完成,中间为斜直的斜井段。这一造斜曲线的设计基础是,以工
21、程计划中计划使用之造斜钻具的最小预计造斜率和最短斜直井段来选择造斜点和计划的造斜曲线末端的位置。在设汁中使用造斜钻具可能的最小造斜率是个关键。 如果上部造斜井段的实际造斜率超过了预计的(最小)造斜率,可以调整斜直井段的长度来使下部造斜井段钻到目标区。这样就把钻到目标区的误差限制在下部造斜井段的实际与预计曲率的误差上 选择适当的斜直井段长度是非常重要的因为几乎没有能够实际保持井斜角不变的稳斜钻具组合。 对高曲率井眼,更为复杂的做法是在钻斜直井段的头一到两个单根时不采用转盘钻,以防止底部钻具组合由于在高曲率的上部造斜井段内旋转而损坏。单曲率斜直造斜曲线设计的最后一项选择是斜直井段的井斜角,最为普遍
22、的选择之一是取45 图25表示了斜直线井斜角对曲率终点总位移的影响。3变曲率变曲率斜直剖面的设计斜直剖面的设计 变曲率斜直造斜曲线的设计是为了进一步控制目标的垂直深度。典型的变曲率斜直造斜曲线见图。 变曲率斜直造斜曲线的设计方法是用上部造斜井段确定的马达造斜钻具组合的实际造斜能力,但是并不根据这一造斜率,而是利用比实际造斜率要低的预计造斜率来选择下部造斜井段的造斜点。 变曲率一斜直剖面设计在垂直目标区的精度和目标区位置及方位之间提供了一个调整的范围。这个调整包括: 靶区垂直深度跟造斜曲率终点位置的方位和位置对比。 造斜曲率终点位置与终点方位的对比。 靶区垂直深度,曲率终点位置和方位精度与费用的
23、对比。 4理想造斜曲率剖面设计 理想造斜曲率剖面就是没有斜立井段的弯曲率造斜剖面。 图为理想造斜曲率剖面设计方法简图。 5水平井剖面设计举例 1)造斜及方位变化计算基本公式图为造斜及方位变化轨迹计算图。 单曲率一斜直剖面设计计算举例题意:选用其造斜率为100ft,设计最小斜直段的长度为ft,倾角为,靶区倾角,靶区总垂深为9000ft。使用最小的工具造斜率设计单曲率一斜直水平井剖面。为设计简图。第三章第三章 长半径水平井井眼轨道控制技术长半径水平井井眼轨道控制技术第一节第一节 水平井各种常用动力钻具的分类与结构特征水平井各种常用动力钻具的分类与结构特征 图-1表示了长、中半径水平井和井眼轨道控制
24、作业的几种井下动力钻具的结构型式。在常规的定向井中,般采用直动力钻具(螺杆钻具或涡轮钻具)加配小角度弯接头(弯角多在2度以下)进行定向造斜,这种钻具组合称为弯接头井下动力钻具组合。与此不同的是,图1所给出的长、中半径水平井常用的动力钻具组合的结构特征是带有特殊的导向结构,如稳定器、垫块、弯壳体以及大角度弯接头等。这些水平井常用动力钻具可作如下分类。 按功能分类 根据使用场合和主要作业功能,可分为造斜动力钻具组合和稳斜动力钻具组合,分别用于造斜井段钻进(着陆控制)和水平段钻进(水平控制)。对于长半径水平井,因其造斜率较低(K6度/30m),这两种功能的钻具可采用同样的结构型式,或一台钻具组合只有
25、两种功能:当定向钻进时,可钻出小曲率井段;当开动转盘导向钻进时,又可钻出稳斜井段和水平井段。相应的钻具结构如图1的D,F和B(当单弯壳休弯角较小时);对于中半径水平井,因其造斜率较高K(620)30m这两种功能的钻具一般不再具有相同的结构型式:用于造斜的钻具组合都采用定向钻进状态,其弯角值较大(弯壳体弯角值一般在1度以上),如图l的B,C,E,G等。稳斜动力钻具已如上所述。 2按主机种类分类 根据主机是螺杆钻具还是涡轮钻具又可把水平井常用井下动力钻具分为两类,但使用最广的是螺杆钻具。这两种钻具在导向结构方面往往差异较大:涡轮钻具因自身结构特点一般不易形成本体上的结构弯角,而且轴向结构尺寸长、故
展开阅读全文