书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型正弦、余弦、正切函数图象课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2425726
  • 上传时间:2022-04-17
  • 格式:PPT
  • 页数:26
  • 大小:2.02MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《正弦、余弦、正切函数图象课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    正弦 余弦 正切 函数 图象 课件
    资源描述:

    1、三角函数图象三角函数图象 -正弦、余弦函数图象正弦、余弦函数图象正弦函数、余弦函数的图象正弦函数、余弦函数的图象课前复习:课前复习: 1、引入弧度制后,实数与角建立一一对应关系,比如=632,2、回顾三角函数的定义: 都是以角为自变量,以单位圆上点的坐标或坐标比值为函数值的函数。sin, cos, tan(0)yyxxx 3、复习:三角函数线xyoPMT1A的终边-1-11sincostanM PO MA T 发现:利用单位圆,正弦线、余弦线、正切线分别是正弦、余弦、正切函数的一种几何表示 课前思考1:既然一个确定的角对应着唯一确定的正(余)弦值,那么,任意给定一个实数 ,有唯一确定的值 与之

    2、对应,由这个对应法则所确定函数 叫做正弦函数(余弦函数),其定义域为 则函数图象怎么画呢? 思考2:比如正弦函数 当自变量 时,函数值为 ,那么对应到坐标系中的点 怎么取呢?(提示:借助单位圆中三角函数线正弦线来刻画点的纵坐标) sin(cos)sin(cos)yyRsiny33sin32(, sin)33新课探究新课探究正、余弦函数的图像(一)1 1、用几何方法在直角坐标系中作出点、用几何方法在直角坐标系中作出点C C( (, ,s si in n) ) 3 33 3OP1 1O O3 3MXy3 32 23 3C C( (, ,s si in n) ) 3 33 3. 引入引入 能否借助上

    3、面作点能否借助上面作点C C的方法,在直角坐标系中作出正弦函的方法,在直角坐标系中作出正弦函数数y=sinxy=sinx(x R)x R)的图象呢?的图象呢?新课探究新课探究正、余弦函数的图像(一)2 2、用几何方法作正弦函数、用几何方法作正弦函数y=sinxy=sinx x 0 x 0, 的图象:的图象:21-1022322656723352yx332346116633265673435611这就是正弦函数y=sinx在x 0 x 0, 的图象。21-102322xy2oxy-11-13232656734233561126sin0, 2 yxx在函数在函数 的图象上,起关键作用的点有:的图象

    4、上,起关键作用的点有:sin,0, 2yx x最高点:最高点:最低点:最低点:与与x轴的交点:轴的交点:(0 , 0 )(, 0 )(2,0) 1,(23)1 ,2( 在精度要求不高的情况下,我们可以利用这在精度要求不高的情况下,我们可以利用这5个点画出函数个点画出函数的简图,一般把这种画图方法叫的简图,一般把这种画图方法叫“五点法五点法”。因为终边相同的角的三角函数值相同,所以因为终边相同的角的三角函数值相同,所以y=sinx,xR的图象在的图象在 与与y=sinx,x0,2的图象相同的图象相同2,4,0,2,2,0,4,2xy-1-12o46246思考:sin,sin0 2yx xRyxx

    5、与,是 相 同 函 数 吗 ? sin yxxR正 弦 曲 线()正弦曲线:正弦曲线:sin yxxRxy1- -1 sin yx函 数的 定 义 域 为R值 域-1 1,对 称 轴 为2xk(kZ)对 称 中 心 为0k(,) (kZ)xy1- -1 cossin()2yxx余弦曲线余弦曲线2余弦函数的图像可以通过正弦曲线向左平移余弦函数的图像可以通过正弦曲线向左平移 各单位长度而得到各单位长度而得到二、余弦函数二、余弦函数y=cosx的图象的图象-oxy-11-13232656734233561126cos0, 2 yxx在函数在函数 的图象上,起关键作用的点有:的图象上,起关键作用的点有

    6、:cos,0, 2yx x最高点:最高点:最低点:最低点:与与x轴的交点:轴的交点:(0 ,1)3(, 0 )2(2,1)(,1)(, 0 )2余弦曲线:余弦曲线:cos yxxRxy1- -1 cos yx函 数的 定 义 域 为R值 域-1 1,对 称 轴 为(xkkZ)对 称 中 心 为(, 0)(2kkZ)二、正弦函数的二、正弦函数的“五点画图法五点画图法”(0,0)、( , 1)、( ,0)、( ,-1)、 (2 ,0)2230 xy1-12232余弦函数的余弦函数的“五点画图法五点画图法”(0,1)、( ,0)、( ,-1)、( ,0)、( , 1)2232oxy22321-1正弦

    7、曲线:正弦曲线:余弦曲线:余弦曲线:sin yxxRcos yxxRxy1- -1 xy1- -1 例2例例1:画出下列函数的简图:画出下列函数的简图(1)y=1+sinx, x 0, (2)y= - cosx, x 0, 22解:(1)按五个关键点列表xsinx1+sinx0 22320 1 0 -1 0 1 2 1 0 1oxy122232y=1+sinx x 0, 2 (2)按五个关键点列表xcosx -cosx0 22321 0 -1 0 1 -1 0 1 0 -1oxy12232y=-cosx x 0, 2-1思考思考:1、函数、函数y=1+sinx的图象与函数的图象与函数y=sin

    8、x的图象有什么关系?的图象有什么关系?2、函数、函数y=-cosx的图象与函数的图象与函数y=cosx的图象有什么关系?的图象有什么关系?o-1122232y=sinx x 0, y=1+sinx x 0, 22yxyxo2232-11y=cosx x 0, y=-cosx x 0, 22例2:观察正弦曲线和余弦曲线,写出满足下列条件x的区间:(1) sin0;x (2) cos0 x (1)0 2(0,)sin0 xx正 弦 曲 线 在,内 , 当时3(2)0 2(,)cos022xx余 弦 曲 线 在,内 , 当时(2,2)(xkkkZ )3(2,2)(22xkkkZ)图像正切函数的定义正

    9、切函数的定义ta n,yx=正切函数:正切函数:xR()x表 示 弧 度且且Zkkx,2(1) 列表列表tan,0, 2yx x用描点法作用描点法作的图象的图象023330例:例:3(,)22x434116323563337654435300331337411 1633xyxy(2) 描点描点(3) 连线连线-23xyo211-222-看几何画板复习三角函数线:复习三角函数线:MTyxOPA(1,0)POA(1,0)MTyxOMPTyxA(1,0)OMPTyxA(1,0)sinM PcosO MtanA T2(1) 作直角坐标系,并在直作直角坐标系,并在直角坐标系角坐标系 y 轴左侧作单位轴左侧作单位圆。圆。作法如下作法如下:2(2) 找横坐标(把找横坐标(把x 轴上轴上到到这一段分成到到这一段分成8等等份)份)(3) 把单位圆右半圆中作出把单位圆右半圆中作出正切线。正切线。(4) 找交叉点。找交叉点。(5) 连线。连线。11xyootanyxxR且且,2xkkZ正切函数图像:正切函数图像:tan,yx,2x xRxkkZ且思考:思考:渐近线方程:渐近线方程:xytan正切函数正切函数图像是否有渐近线?图像是否有渐近线?, ()2xkkZoxy2323221122

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:正弦、余弦、正切函数图象课件.ppt
    链接地址:https://www.163wenku.com/p-2425726.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库