空间向量及其加减数乘运算课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间向量及其加减数乘运算课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 及其 加减 运算 课件
- 资源描述:
-
1、空间向量1、定义: 既有大小又有方向的量。几何表示法:用有向线段表示字母表示法:用小写字母表示,或者用表示向量的有向线段的起点和终点字母表示。基本概念aAB2、长度或模:向量的大小 记作:aAB3、零向量:长度为零的向量。 记作:04、单位向量: 长度为1的向量。5、相反向量: 与向量a长度相等而方向相反的向量,称为a的相反向量。 记作:a-6、相等向量:方向相同且模相等的向量。2、平面向量的加法、减法向量加法的三角形法则ab向量加法的平行四边形法则ba向量减法的三角形法则aba ba b推广:(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;nnnAAAAAAAAA
2、A11433221(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量。01433221AAAAAAAAn3、平面向量的加法、减法)()(cbacbaabba加法交换律:加法结合律:平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则)()(cbacbaabba空间向量及其加减空间向量具有大小和方向的量加法交换律加法结合律平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减空间向量具有大小和方向的量)()(cbacbaabba加法交换律加法结合律ababab+OAb
3、BCOCOACAABOAOB空间向量的加减法ababOABb结论:空间任意两个向量都是共面向量,所以它们可用结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。同一平面内的两条有向线段表示。因此凡是涉及空间任意两个向量的问题,平面向量中有因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。关结论仍适用于它们。思考:它们确定的平面是否唯一?思考:它们确定的平面是否唯一?思考:空间任意两个向量是否可能异面?思考:空间任意两个向量是否可能异面?平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其
4、加减与数乘运算空间向量具有大小和方向的量)()(cbacbaabba加法交换律加法结合律abba加法交换律加法:三角形法则或平行四边形法则减法:三角形法则加法结合律成立吗?abcOBCab+abcOBCbc+( (平面向量平面向量) )向量加法结合律在空间中仍成立吗向量加法结合律在空间中仍成立吗? ?ab+c+()ab+c+()AA( ( a + + b )+ )+ c = = a +( +( b + + c ) )abcOABCab+abcOABCbc+( (空间向量空间向量) )ab+c+()ab+c+()( ( a + + b )+ )+ c = = a +( +( b + + c )
5、)向量加法结合律:向量加法结合律:空间中空间中平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量具有大小和方向的量)()(cbacbaabba加法交换律加法结合律小结abba加法交换律)()(cbacba加法结合律类比思想 数形结合思想例例1:已知已知平行六面体平行六面体(底面是平行四边形的四棱柱)底面是平行四边形的四棱柱)ABCD-A1B1C1D1,化简下列向量表达式,并标出,化简下列向量表达式,并标出化简结果的向量化简结果的向量.(如图如图)ABCDA1B1C1D1ADAAABAAADABBCAB11)3()2(1 )(AC1A
展开阅读全文