概率论与数理统计课件-L5.4假设检验概述.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率论与数理统计课件-L5.4假设检验概述.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 课件 L5 假设检验 概述
- 资源描述:
-
1、54 假设检验概述一、假设检验问题的提法 二、假设检验的思想和原理 三、假设检验的一般步骤 四、检验的显著性水平与两类错误 六、多参数与非参数假设检验问题 五、检验的p值 1引例 例520 某厂生产的一批产品 其出厂标准为 次品率不超过4% 现抽测60件产品 发现有3件次品 问这批产品能否出厂? 若以X记一次抽测的结果 X1与X0分别表示抽到次品与正品 则X为伯努利总体且PX1p 这里p为次品率 问题转化为判断是否有p4% 我们把它称为一个假设 一、假设检验问题的提法2一、假设检验问题的提法引例 例520 某厂生产的一批产品 其出厂标准为 次品率不超过4% 现抽测60件产品 发现有3件次品 问
2、这批产品能否出厂? 根据问题 知 次品率p是未知的 样本的次品率为3/605% 但我们不能简单地根据样本的次品率5%认定次品率超过4% 而必须提出合理的方法去判断假设是否成立 我们要利用样本去判断假设p4%是否成立 3 例521 某厂宣称已采取大力措施治理废水污染 根据经验 废水中所含某种有毒物质的浓度X(单位 mg/kg)服从正态分布 现环保部门抽测了9个水样 测得样本平均值为x17.4 样本标准差为s24 以往该厂废水中有毒物质的平均浓度为182 试问有毒物质的浓度有无显著变化? 根据问题 知 XN( 2) 其中 2均是未知的 正常情况下 182 样本平均值为x174 直观上看 有毒物质的
3、浓度有所降低 但这种差异也有可能是抽样的随机性造成的 问题可转化为判断是否有182 我们要利用样本去判断假设182是否成立 4 例522 随机抽测了50名2000年1月出生的男婴的体重 希望确定男婴的体重X是否服从正态分布 设F(x)为X的分布函数 同样先提出假设 F(x)是N( 2)分布 然后利用样本去判断假设是否成立 例521 某厂宣称已采取大力措施治理废水污染 根据经验 废水中所含某种有毒物质的浓度X(单位 mgkg)服从正态分布 现环保部门抽测了9个水样 测得样本平均值为x17.4 样本标准差为s24 以往该厂废水中有毒物质的平均浓度为182 试问有毒物质的浓度有无显著变化?5 对总体
4、分布函数的类型或分布函数中的参数提出假设 希望通过抽样并根据样本提供的信息对假设是否成立进行推断 这类问题即是统计推断的另一类基本问题假设检验 假设检验 在假设检验问题中 我们把任何一个有关总体未知分布的假设称为统计假设 简称假设 统计假设 通常把待检验的假设称为原假设或零假设 记为H0 与之对立的假设则称为备择假设或对立假设 记为H1 6 通常把待检验的假设称为原假设或零假设 记为H0 与之对立的假设则称为备择假设或对立假设 记为H1 对总体分布函数的类型或分布函数中的参数提出假设 希望通过抽样并根据样本提供的信息对假设是否成立进行推断 这类问题即是统计推断的另一类基本问题假设检验 假设检验
5、统计假设 比如上述三例假设问题可分别简述为 H0 p4%H1 p4% H0 182H1 182 H0 F(x)是N( 2)分布H1F(x)不是N( 2)分布 7 总体的分布类型是已知的 未知的只是其中的一个或几个参数 统计假设只与这些未知参数有关 我们称为参数假设 相应的检验称为参数假设检验 总体的分布类型也是未知的 在这种情形往往需要直接针对总体分布的具体形式或总体分布的某些特征提出假设 我们称此类假设为非参数假设 相应的检验称为非参数假设检验 参数假设检验与非参数假设检验 8 我们可以对照确定性论证中的反证法 如果条件A成立导出一个矛盾的或不可能成立的结论B 那么A就是错误的 假设检验的一
6、般思想 二、假设检验的思想和原理9 统计上的假设检验不可能像反证法一样导出确定的结论 但论证的逻辑却相似 它依据的是小概率原理 如果H0成立导致一个小概率事件发生了 那么我们就拒绝假设H0 二、假设检验的思想和原理 检验的显著性水平是根据具体问题需要事先确定的一个很小的正数 比如001 005 010等 假设检验的一般思想 检验的显著性水平 要实施检验 首先要确定小概率的大小 这一小概率在假设检验中称为检验的显著性水平 通常记作 10 统计上的假设检验不可能像反证法一样导出确定的结论 但论证的逻辑却相似 它依据的是小概率原理 如果H0成立导致一个小概率事件发生了 那么我们就拒绝假设H0 二、假
7、设检验的思想和原理假设检验的一般思想 检验的显著性水平 要实施检验 首先要确定小概率的大小 这一小概率在假设检验中称为检验的显著性水平 通常记作 对给定的显著性水平 我们要确定一个由样本所描述的概率不超过显著性水平的小概率事件 这一小概率事件对应的样本取值区域通常称为假设检验的拒绝域 拒绝域 11二、假设检验的思想和原理 对给定的显著性水平 我们要确定一个由样本所描述的概率不超过显著性水平的小概率事件 这一小概率事件对应的样本取值区域通常称为假设检验的拒绝域 拒绝域 一旦样本观察值落入拒绝域 便拒绝零假设 否则 不能拒绝零假设 为确定拒绝域 需要构造一个含待检验参数、分布已知的枢轴量 通过枢轴
展开阅读全文