书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型中考数学创新题型之开放性问题课件.pptx

  • 上传人(卖家):云出其山
  • 文档编号:2397572
  • 上传时间:2022-04-13
  • 格式:PPTX
  • 页数:16
  • 大小:572.01KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《中考数学创新题型之开放性问题课件.pptx》由用户(云出其山)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中考 数学 创新 题型 开放性 问题 课件 下载 _其它资料_数学_初中
    资源描述:

    1、创新题型-开放性问题开放性问题开放性问题 数学开放题是指那些条件不完整,结论数学开放题是指那些条件不完整,结论不确定,解法不限制的数学问题。不确定,解法不限制的数学问题。它的显著特点:正确答案不唯一。它的显著特点:正确答案不唯一。题型:题型:给出问题的结论,让解题者分析探索使结论给出问题的结论,让解题者分析探索使结论成立应具备的条件,而满足结论的条件往往不是成立应具备的条件,而满足结论的条件往往不是唯一的,这样的问题是条件开放性问题。唯一的,这样的问题是条件开放性问题。例例1 1 如图,如图,AB=DB,1=2AB=DB,1=2,请添加一个条,请添加一个条件:件: ,使得,使得ABCDBEAB

    2、CDBE,并证明你的结论。并证明你的结论。 A AD DC CB BE E1 12 2BC=BE BC=BE 或或A=DA=D或或C=EC=E能添加条件:能添加条件:DE=ACDE=AC吗?吗? 填写条件时,应符合题意或相关的概念、填写条件时,应符合题意或相关的概念、性质、定理性质、定理. .1 1、多项式、多项式9x9x2 2+1+1加上一个单项式后加上一个单项式后, , 使它能使它能成为一个整式的完全平方成为一个整式的完全平方, ,那么加上的单项那么加上的单项式可以是式可以是_。( (填上一个你认为正确填上一个你认为正确的即可的即可) ) 2 2、已知二次函数的图像开口向下,且与、已知二次

    3、函数的图像开口向下,且与y y轴轴的正半轴相交,请你写出一个满足条件的二的正半轴相交,请你写出一个满足条件的二次函数的解析式是次函数的解析式是 。 (20052005年金华)如图,在年金华)如图,在ABCABC中,点中,点D D在在ABAB上,点上,点E E在在BCBC上,上,BDBDBE.BE. (1 1)请你再添加一个条件,使得)请你再添加一个条件,使得BEABEABDCBDC,并给出证明,并给出证明. . 你添加的条件是:你添加的条件是: . .FEDCBA(2 2)根据你添加的条件,)根据你添加的条件,再写出图中的一对全等三再写出图中的一对全等三角形:角形: . . (只要求写(只要求

    4、写出一对全等三角形,不再出一对全等三角形,不再添加其他线段,不再标注添加其他线段,不再标注或使用其他字母,不必写或使用其他字母,不必写出证明过程)出证明过程) 给出问题的条件,让解题者根据条件给出问题的条件,让解题者根据条件探索相应的结论,而符合条件的结论往往呈探索相应的结论,而符合条件的结论往往呈现多样性,这样的问题是结论开放性问题。现多样性,这样的问题是结论开放性问题。例例2 2如图,如图,O O是等腰三角形是等腰三角形ABCABC的外接圆,的外接圆,ADAD、AEAE分别是分别是BACBAC的邻补角的平分线,的邻补角的平分线,ADAD交交O O于点于点D D,交交BCBC于于F F,由这

    5、些条件请直接写出正确的结论:,由这些条件请直接写出正确的结论: (不再连结其他线段)(不再连结其他线段)B=C , BF=CF, B=C , BF=CF, AB=AC, BD=CD, AB=AC, BD=CD, ADBC, ADAE, AEADBC, ADAE, AEBC,BC,ADAD是是O O的直径,的直径,AEAE是是O O的切线的切线 得出的结论应尽可能得出的结论应尽可能用上题目及图形所给的条件。用上题目及图形所给的条件。 1.1.(20052005年武汉)已知:如图,在年武汉)已知:如图,在ABCABC中,点中,点D D、E E分贝在边分贝在边ABAB、ACAC上,上,连结连结DED

    6、E并延长交并延长交BCBC的延长线于点的延长线于点F F,连结,连结DCDC、BEBE。若。若BDEBDEBCEBCE180180. . (1 1)写出图中三对相似三角形(注意:不得添加字母和线);)写出图中三对相似三角形(注意:不得添加字母和线); (2 2)请在你所找出的相似三角形中选取一对,说明它们相似的理由。)请在你所找出的相似三角形中选取一对,说明它们相似的理由。例例3 3 在一服装厂里有大量形状为等腰直角在一服装厂里有大量形状为等腰直角三角形的边角布料(如图)现找出其中一三角形的边角布料(如图)现找出其中一种,测得种,测得C=90C=90,AC=BC=4AC=BC=4,今要从这种,

    7、今要从这种三角形中剪出一种扇形,做成不同形状的三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在玩具,使扇形的边缘半径恰好都在ABCABC的的边上,且扇形的弧与边上,且扇形的弧与 ABCABC的其他边相切,的其他边相切,请设计出所有可能符合题意的方案示意图,请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要画出图形,并直并求出扇形的半径(只要画出图形,并直接写出扇形半径)。接写出扇形半径)。C CA AB B三、策略开放型三、策略开放型例例4 4:先根据条件要求编写应用题,再解:先根据条件要求编写应用题,再解答你所编写的应用题。答你所编写的应用题。编写要求:编写要求:

    8、(1 1):编写一道行程问题的应用题,使):编写一道行程问题的应用题,使得根据其题意列出的方程为得根据其题意列出的方程为(2 2)所编写应用题完整,题意清楚。)所编写应用题完整,题意清楚。联系生活实际且其解符合实际。联系生活实际且其解符合实际。四、综合开放型四、综合开放型例例5 5:一单杠高:一单杠高2.22.2米米, ,两立柱之间的距离为两立柱之间的距离为1.61.6米米, ,将一根绳子的两端栓于立柱与铁杠结将一根绳子的两端栓于立柱与铁杠结合处合处, ,绳绳 子自然下垂呈抛物线状子自然下垂呈抛物线状. . (1) (1)一身高一身高0.70.7米的小孩子站在离立柱米的小孩子站在离立柱0.40

    9、.4米处米处, ,其头部刚好触上绳子其头部刚好触上绳子, ,求绳子最低点到求绳子最低点到地面的距离地面的距离; ; (2) (2)为供孩子们打秋千为供孩子们打秋千, ,把绳子剪断后把绳子剪断后, ,中间系一块长为中间系一块长为0.40.4米的木板米的木板, ,除掉系木板用除掉系木板用去的绳子后去的绳子后, ,两边的绳子正好各为两边的绳子正好各为2 2米米, ,木板木板与地面平行与地面平行, ,求这时木板到地面的距离求这时木板到地面的距离( (供选供选用数据用数据: ): )分析:由于绳子是抛分析:由于绳子是抛物线型,故求绳子最物线型,故求绳子最低点到地面的距离就低点到地面的距离就是求抛物线的最

    10、小值是求抛物线的最小值问题,因而必须知抛问题,因而必须知抛物线的解析式,由于物线的解析式,由于抛物线的对称轴是抛物线的对称轴是y y轴,故可设解析式为:轴,故可设解析式为:y=axy=ax2 2+c+c的形式,的形式,而此人所站位置的坐标为(而此人所站位置的坐标为(0.4,0.7),0.4,0.7),绳子系的坐标为(绳子系的坐标为(0.8,2.2)0.8,2.2),将其代入,将其代入解析式得解析式得a,ca,c分析:求分析:求EFEF离地离地面的距离,实际面的距离,实际上是求上是求POPO的长度,的长度,也就是求也就是求GHGH的长的长度,而度,而GH=BHBGGH=BHBG,BGBG正好在正

    11、好在RtRtBFGBFG中,可根据勾股中,可根据勾股定理求出。定理求出。四、综合开放型四、综合开放型 例、编写一道应用题,使得根据题例、编写一道应用题,使得根据题意列出的方程组为:意列出的方程组为: 再解答你所列出的应用题。(要求:所编应再解答你所列出的应用题。(要求:所编应用题完整,题意清楚,联系生活且其解符合用题完整,题意清楚,联系生活且其解符合实际。)实际。) 开放性问题开放性问题作用:培养创新意识、创造能力 正确答案不唯一类型特点条件开放型结论开放型策略开放型综合开放型不要忘了 悟 字 必做题:必做题:1 1、写出一个图象位于一、三象限的、写出一个图象位于一、三象限的反比例函数表示式反比例函数表示式_。 2 2、小华为班级设计了一个班徽、小华为班级设计了一个班徽, ,图中有一菱形图中有一菱形. .为为了检验小华所画的菱形是否准确了检验小华所画的菱形是否准确, ,请你以带有刻度请你以带有刻度的三角尺为工作的三角尺为工作, , 帮小华设计一个检验的方案帮小华设计一个检验的方案_选做题:编写一道应用题,使得根据题意列选做题:编写一道应用题,使得根据题意列出的方程为:出的方程为: 。再解答你所列出的应。再解答你所列出的应用题。(要求:所编应用题完整,题意清楚,联用题。(要求:所编应用题完整,题意清楚,联系生活且其解符合实际。)系生活且其解符合实际。) 谢谢!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中考数学创新题型之开放性问题课件.pptx
    链接地址:https://www.163wenku.com/p-2397572.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库