弹塑性断裂力学的J积分理论课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《弹塑性断裂力学的J积分理论课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 塑性 断裂力学 积分 理论 课件
- 资源描述:
-
1、弹塑性断裂力学的弹塑性断裂力学的J J积分理论积分理论目录J积分理论应用积分理论应用断裂力学背景断裂力学背景全文总结全文总结一、背景断裂力学弹塑性断裂线弹性断裂Dugdale理论无网格法有限元法边界元法小波数值法J理论COD理论对材料和结构的安全性评估一、背景1960年Dugdale运用Muskhelishvili的方法,研究了裂纹尖端的塑性区(D-M模型)理论发展1961年Wells在大量实验的基础上,提出了以裂纹尖端的张开位移COD描述其应力、应变场COD准则1968年Rice提出了J积分理论,以J积分为参数建立了断裂准则一、背景 COD准则应用到焊接结构和压力容器的断裂安全分析上,非常有
2、效,加上?的测量方法比较简单,工程上应用较为普遍,但塑性材料的裂纹开始扩展到结构失稳还有一定的承载能力,故用?作为设计指标偏于保守,另外COD准则没有明确的物理意义。 J积分是围绕裂纹尖端的与路径无关的闭合曲线的线积分,它有明确的物理意义。J积分准则认为:当围绕裂纹尖端的J积分达到临界值时,裂纹开始扩展。与COD准则相比,J积分准则理论根据严格,定义明确。一、背景 有限单元法是建立在传统的Ritz法的基础上,利用变分原理导出代数方程组进行求解的一种方法。它将连续的介质离散成有限的单元进行数值计算,通过对连续体的离散化,在每个单元上建立插值函数,从而建立整个求解域上的函数,然后利用节点位移求出应
3、力分量。有限元法实现了统一的计算模型、离散方法、数值求解和程序设计方法,从而能广泛地适应求解复杂结构的力学问题。计算理论1:一、背景 边界元法是继有限元之后发展起来的一种求解力学问题的数值方法。其构成包含如下三个部分:1)基本解特性及其选用:2)离散化及边界单元的选取;3)叠加法与求解技术。边界元法的优点是应用Gauss定理使问题降阶,三维问为二维问题,二维问题降为一维问题。与有限元比较起来,边界元法需要处题降理的空间维数少,使得输入数据的准备上大为简化,网格的划分和重新调整更为方便,最后形成的代数方程组规模也要小很多,因此能够大大缩短计算时自J,减少计算量。边界元法的缺点就是必须求解问题的基
4、本解,而基本解的求解是比较困难的,对于非线性问题尤甚。计算理论2:一、背景 无网格法起源于20世纪80年代,现在已经得到工程界的广泛关注。该方法将整个求解域离散为独立的节点,而无须将节点连成单元,它不需要划分网格,从而克服了有限元法在计算过程中更新网格很麻烦的缺陷。另外,无网格法只需要计算域的几何边界点及计算点,不需要单元信息,因此具有边界元的优点,而且无网格法的基本方程和数学基础与有限元法相同,所以它又具有有限元法的优点,还具有比边界元法更广泛的应用范围。计算理论3:一、背景 小波理论作为一种新的数学工具正在迅速的发展起来,被广泛应用于信号处理、图像压缩、模式识别、微分方程求解等。他以同时在
展开阅读全文