弹塑性力学第九章课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《弹塑性力学第九章课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 塑性 力学 第九 课件
- 资源描述:
-
1、 1.11.1空间轴对称问题特点:空间轴对称问题特点: 1. 1. 域内所有物理量(体力、面力、位移、域内所有物理量(体力、面力、位移、应力、应变)均为应力、应变)均为r、z的函数。的函数。 与平面轴对称问题类似,空间轴对称与平面轴对称问题类似,空间轴对称问题的求解域、荷载和约束绕某一轴(问题的求解域、荷载和约束绕某一轴(z轴)轴)对称,导致如下简化,对称,导致如下简化, 2 2荷载:体力荷载:体力f =0,面力,面力 ,位移,位移u u =0=0,应力应力 r = z =0,应变,应变 r = z =0。0F3待求的物理量待求的物理量 :ur、w、 r、 、 z、 rz= zr、 r、 、
2、z、 rz= zr0rrzrrfrzr0zzrzzrfrzr2.几何方程(四个):几何方程(四个):rurrrurzwzrwzurrzzr3.3.变形协调方程(四个)变形协调方程(四个)02122rrrrrr022222zrzrrzzr0)(12rzrzr01122rrzrzzrz4.物理方程(四个):物理方程(四个):zwruruerr)(1zrrE)(1zrE其中其中 体积应变体积应变或或 )(1rzzEzrrzE2)1 ( 5.边界条件边界条件rruu ww ,rrk Zkzrz zzkZ,rzrk位移边界:位移边界: 在在Su上上6.按应力解法按应力解法 力的边界:在力的边界:在 r=
3、r0 在在 z=z0 四个应力分量四个应力分量 r、 、 z、 rz 为基本未知量。为基本未知量。基本方程(六个):基本方程(六个): 两个平衡微分方程与两个平衡微分方程与 四个用应力表示的变四个用应力表示的变 形协形协 调方程;调方程; 再加上力的边界条件。再加上力的边界条件。 如果体力为零时,基本方程为齐次方程,则如果体力为零时,基本方程为齐次方程,则可采用应力函数解法,引入应力函数可采用应力函数解法,引入应力函数 (r,z) ,使得应力用使得应力用 (r,z) 表示表示:)(222rzr)1(2rrz)2(222zzz)1(222zrzrrz (r,z)满足第一个平衡微分方程,而第二个平
4、衡满足第一个平衡微分方程,而第二个平衡方程及四个相容方程,共同要求方程及四个相容方程,共同要求 2 2 = 4 =0 (r,z)应满足的基本微分方程。应满足的基本微分方程。222221zrrr0)()(2rrrfruuGreG2()0,zeGGwfz7按位移法解按位移法解 其中其中 a基本未知函数:基本未知函数: ur和和w 基本方程两个:基本方程两个: 并考虑适当的边界条件。并考虑适当的边界条件。zrGur2210u)1 (221222zGw)(222rzr)1(2rrz)2(222zzz)1(222zrzrrzzRrPx yz选选 (r,z) 为为r和和z的正一次幂式的正一次幂式: (r,
5、z) = A1R+ A2R - zln(R+z) 为双调和函数为双调和函数zRrPx yz (r,z) = A1R+ A2R - zln(R+z)则则 (r,z) 自然满足自然满足 4 =0 。代入位移、应力计算式代入位移、应力计算式.)(21231zRRrARrAGuzrRARRzAGw23211)43(21zRrPx yz位移:位移:应力:应力: )(13)21 (325231zRRRzARzrRzAr)()21 (231zRRARzA3253313)21 (RzARzRzAz3252313)21 (RrARrzRrArz根据边界条件来确定根据边界条件来确定A1和和A2:zRrPx yz在
6、在z=0且且r 0边界上边界上, z=0 自然满足。自然满足。在在z=0且且r 0边界上边界上, zr= 0 3253313)21 (RzARzRzAz(1-2 )A1+ A2 = 0(a)3252313)21 (RrARrzRrArz在在z= z0 0平面上,要求平面上,要求 z 的合力与的合力与P平衡。平衡。 020Prdrz还需一个条件(包括还需一个条件(包括P的)。的)。 将将 z 表达式代入,得表达式代入,得zPrrdrz0 z P - 4 A1(1- )- 2 A2 = 0 (b)023)1(2030205300301drRrzAdrRrzdrRrzAP0023202031)(zd
7、rzrrdrRr300252020531)(zdrzrrdrRr 而而GrPur4)21 ( GrPw2)1 ( Prz已知条件:半空间体在边界上受已知条件:半空间体在边界上受均布法向荷载均布法向荷载q作用,在半径作用,在半径为为a的圆面积。的圆面积。zaqar寻求解答:寻求解答:1. z =0边界上的沉陷边界上的沉陷 w z=0 = ? 2. r =0(对称轴)上的应力和位移。(对称轴)上的应力和位移。求解方法:采用叠加法和半空间体边界受法向求解方法:采用叠加法和半空间体边界受法向集中力集中力P的计算结果求解。的计算结果求解。3.1 边界上一点边界上一点M的竖向位移的竖向位移w:1.设设M点
8、为圆面积之外:点为圆面积之外: M点可以在荷载圆面积点可以在荷载圆面积之外也可在之内。之外也可在之内。zaqar 当半空间体边界上受法向集中力当半空间体边界上受法向集中力P时,时,边界上距边界上距P点为点为r的点竖向位移为的点竖向位移为 :ErPGrPw)1 (2)1 (2圆面积均布荷载圆面积均布荷载q对圆外对圆外M 点竖向位移影响可点竖向位移影响可取一个微面元,距取一个微面元,距M点为点为s,角度为,角度为 处,处,dA=sd ds ,dA上上q 对对M点影响:点影响: rraMs1s2sdsdzaqarrraMs1s2sdsdEdsqdEsqsdsddw)1 ()1 (22ErPGrPw)
9、1 (2)1 (2整体圆面积荷载对整体圆面积荷载对M点影响为点影响为dssEqdsdEqdww)1 (2)1 (102221(对称性22212sin2rass而而rraMs1s2sdsd 1为为M点作为圆相切线点作为圆相切线OM线的夹角线的夹角draEqw102222sin)1 (4rraMs1s2sdsd为了简化积分将积分为了简化积分将积分变量变量 转变为转变为 由图形可见由图形可见 asin =rsin , 两边微分两边微分 acos d = rcos d coscosaddr rraMs1s2sdsd2222coscos1 sin1sinadadrarr 222cos1sinaddarr
10、 2sinsin1aar 的取值范围:由的取值范围:由0 1 rraMs1s2sdsd的取值范围:的取值范围:0 2222220224(1)cossin1sinqadwaaEarr222222022(1 sin)4(1)1sinadqrrEar2222224(1)cos1sinqadEarr 第二类椭圆积分第二类椭圆积分 第一类椭圆积分第一类椭圆积分22222222200224(1)1sin(1)1sinqraadwdErrar 对于不同对于不同a/r可由椭圆积分表得到。可由椭圆积分表得到。2M点载荷在圆之内:点载荷在圆之内:EdsqdEsqsdsddw)1 ()1 (22Masdsdrmn圆
展开阅读全文