实际问题与二次函数.ppt课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《实际问题与二次函数.ppt课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际问题 二次 函数 ppt 课件
- 资源描述:
-
1、-202462-4xy若若3x3,该函数的最,该函数的最大值、最小值分别为大值、最小值分别为( )、()、( )。)。 又若又若0 x3,该函数的,该函数的最大值、最小值分别为最大值、最小值分别为( )、()、( )。)。求函数的最值问题,应注意什么求函数的最值问题,应注意什么? ?55 555 132、图中所示的二次函数图像的、图中所示的二次函数图像的解析式为:解析式为: 13822xxy1 1、求下列二次函数的最大值或最小值:、求下列二次函数的最大值或最小值: y=x22x3; y=x24x 某商品现在的售价为每件某商品现在的售价为每件60元,元,每星期可卖出每星期可卖出300件,市场调查
2、反件,市场调查反映:每涨价映:每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每星期可多卖出元,每星期可多卖出18件,已知商品的进价为每件件,已知商品的进价为每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?请大家带着以下几个问题读题请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?自变量?哪些量随之发生了变化? 某商品现在的售价为每件某商品现在的售价为每件60元,每星期元,每星期可卖出可卖出300件,市场调查反映:每涨
3、价件,市场调查反映:每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每元,每星期可多卖出星期可多卖出18件,已知商品的进价为件,已知商品的进价为每件每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况先来看涨价的情况:先来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商元,则每星期售出商品的利润品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。的函数关系式。涨价涨价x元时则每星期少卖元时则每星期少卖 件,实际卖出件,实际卖出 件件,销销额为额为 元,买进商
4、品需付元,买进商品需付 元因此,所得利润为因此,所得利润为元元10 x(300-10 x)(60+x)(300-10 x)40(300-10 x)y=(60+x)(300-10 x)-40(300-10 x)即即6000100102xxy(0X30)6000100102xxy(0X30)625060005100510522最大值时,yabx可以看出,这个函数的可以看出,这个函数的图像是一条抛物线的一图像是一条抛物线的一部分,这条抛物线的顶部分,这条抛物线的顶点是函数图像的最高点,点是函数图像的最高点,也就是说当也就是说当x取顶点坐取顶点坐标的横坐标时,这个函标的横坐标时,这个函数有最大值。由公
5、式可数有最大值。由公式可以求出顶点的横坐标以求出顶点的横坐标.元x元y625060005300所以,当定价为所以,当定价为65元时,利润最大,最大利润为元时,利润最大,最大利润为6250元元在降价的情况下,最大利润是多少?在降价的情况下,最大利润是多少?请你参考请你参考(1)的过程得出答案。的过程得出答案。解:设降价解:设降价x元时利润最大,则每星期可多卖元时利润最大,则每星期可多卖18x件,实件,实际卖出(际卖出(300+18x)件,销售额为件,销售额为(60-x)(300+18x)元,买元,买进商品需付进商品需付40(300-10 x)元,因此,得利润元,因此,得利润60506000356
6、035183522最大时,当yabx答:定价为答:定价为 元时,利润最大,最大利润为元时,利润最大,最大利润为6050元元 3158做一做做一做由由(1)(2)的讨论及现在的销售的讨论及现在的销售情况情况,你知道应该如何定价能你知道应该如何定价能使利润最大了吗使利润最大了吗?60006018183004018300602xxxxxy(0 x20):运用二次函数的性质求实际问题的最大值和最小值运用二次函数的性质求实际问题的最大值和最小值的一般步骤的一般步骤 : :求出函数解析式和自变量的取值范围求出函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。配方变形,或利用公式求它的最
7、大值或最小值。检查求得的最大值或最小值对应的自变量的值必检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内须在自变量的取值范围内 。 某商场销售某种品牌的纯牛奶,已知进价为每箱某商场销售某种品牌的纯牛奶,已知进价为每箱4040元,元,市场调查发现:若每箱以市场调查发现:若每箱以50 50 元销售元销售, ,平均每天可销售平均每天可销售100100箱箱. . 价格每箱降低价格每箱降低1 1元,平均每天多销售元,平均每天多销售2525箱箱 ; ; 价格每箱升高价格每箱升高1 1元,平均每天少销售元,平均每天少销售4 4箱。如何定价才能使得利润最大?箱。如何定价才能使得利润最大? 练一
8、练练一练若生产厂家要求每箱售价在若生产厂家要求每箱售价在4555元之间。元之间。如何定价才能使得利润最大?(为了便于计如何定价才能使得利润最大?(为了便于计算,要求每箱的价格为整数)算,要求每箱的价格为整数) 有一经销商,按市场价收购了一种活蟹有一经销商,按市场价收购了一种活蟹1000千克,千克,放养在塘内,此时市场价为每千克放养在塘内,此时市场价为每千克30元。据测算,此后元。据测算,此后每千克活蟹的市场价,每天可上升每千克活蟹的市场价,每天可上升1元,但是,放养一天元,但是,放养一天需各种费用支出需各种费用支出400元,且平均每天还有元,且平均每天还有10千克蟹死去,千克蟹死去,假定死蟹均
9、于当天全部售出,售价都是每千克假定死蟹均于当天全部售出,售价都是每千克20元(放元(放养期间蟹的重量不变)养期间蟹的重量不变).设设x天后每千克活蟹市场价为天后每千克活蟹市场价为P元,写出元,写出P关于关于x的函数的函数关系式关系式.如果放养如果放养x天将活蟹一次性出售,并记天将活蟹一次性出售,并记1000千克蟹的千克蟹的销售总额为销售总额为Q元,写出元,写出Q关于关于x的函数关系式。的函数关系式。 该经销商将这批蟹放养多少天后出售,可获最大利润,该经销商将这批蟹放养多少天后出售,可获最大利润,(利润(利润=销售总额销售总额-收购成本收购成本-费用)?最大利润是多少?费用)?最大利润是多少?解
10、:由题意知解:由题意知:P=30+x. 由题意知:死蟹的销售额为由题意知:死蟹的销售额为200 x元,元,活蟹的销售额为(活蟹的销售额为(30+x)()(1000-10 x)元。元。 驶向胜利的彼岸Q=(30+x)(1000-10 x)+200 x= - -10 x2+900 x+30000设总利润为设总利润为W=Q-30000-400 x=-10 x2+500 x =-10(x-25)2+6250当当x=25时,总利润最大,最大利润为时,总利润最大,最大利润为6250元。元。x(元元)152030y(件件)252010 若日销售量若日销售量 y 是销售价是销售价 x 的一次函数。的一次函数。
11、 (1)求出日销售量)求出日销售量 y(件)与销售价(件)与销售价 x(元)的函元)的函数关系式;(数关系式;(6分)分) (2)要使每日的销售利润)要使每日的销售利润最大最大,每件产品的销售价,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(应定为多少元?此时每日销售利润是多少元?(6分)分) 某产品每件成本某产品每件成本10元,试销阶段每件产品的销售价元,试销阶段每件产品的销售价 x(元)与产品的日销售量(元)与产品的日销售量 y(件)之间的关系如下表:(件)之间的关系如下表:(2)设每件产品的销售价应定为)设每件产品的销售价应定为 x 元,所获销售利润元,所获销售利润为为 w
12、元。则元。则 产品的销售价应定为产品的销售价应定为25元,此时每日获得最大销售利元,此时每日获得最大销售利润为润为225元。元。15252020kbkb则则解得:解得:k=1,b40。1分5分6分7分10分12分 (1)设此一次函数解析式为)设此一次函数解析式为 。bkxy22525 40050401022xxxxxw所以一次函数解析为所以一次函数解析为 。40 xyw设旅行团人数为设旅行团人数为x人人,营业额为营业额为y y元元, ,则则旅行社何时营业额最大旅行社何时营业额最大w1.1.某旅行社组团去外地旅游某旅行社组团去外地旅游,30,30人起组团人起组团, ,每人单价每人单价800800
13、元元. .旅行社对超过旅行社对超过3030人的团给予优惠人的团给予优惠, ,即旅行团每增即旅行团每增加一人加一人, ,每人的单价就降低每人的单价就降低1010元元. .你能帮助分析一下你能帮助分析一下, ,当当旅行团的人数是多少时旅行团的人数是多少时, ,旅行社可以获得最大营业额?旅行社可以获得最大营业额?3010800 xxy.3025055102xxx1100102 某宾馆有某宾馆有5050个房间供游客居住,当个房间供游客居住,当每个房间的定价为每天每个房间的定价为每天180180元时,房间会全元时,房间会全部住满。当每个房间每天的定价每增加部住满。当每个房间每天的定价每增加1010元元时
14、,就会有一个房间空闲。如果游客居住房时,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出间,宾馆需对每个房间每天支出2020元的各种元的各种费用费用. .房价定为多少时,宾馆利润最大?房价定为多少时,宾馆利润最大?解:设每个房间每天增加解:设每个房间每天增加x元,宾馆的利润为元,宾馆的利润为y元元Y=(50-x/10)(180+x)-20(50-x/10)Y=-1/10 x2+34x+80001.1.某商场销售一批名牌衬衫,平均每天可售出某商场销售一批名牌衬衫,平均每天可售出2020件,每件盈利件,每件盈利4040元,为了扩大销售,增加盈利,尽快减少库存,商场决定元,为了扩大销售
15、,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价采取适当的降价措施。经调查发现,如果每件衬衫每降价1 1元,商场平均每天可多售出元,商场平均每天可多售出2 2件。件。(1 1)若商场平均每天要盈利)若商场平均每天要盈利12001200元,每件衬衫应降价多少元?元,每件衬衫应降价多少元?(2 2)每件衬衫降价多少元时,商场平均每天盈利最多?)每件衬衫降价多少元时,商场平均每天盈利最多?(三)(三)销售问题2.2.某商场以每件某商场以每件4242元的价钱购进一种服装,根据试销得知这种服装元的价钱购进一种服装,根据试销得知这种服装每天的销售量每天的销售量t t(件
16、)与每件的销售价(件)与每件的销售价x x(元(元/ /件)可看成是一次件)可看成是一次函数关系:函数关系: t t3x3x204204。 (1 1). .写出商场卖这种服装每天销售利润写出商场卖这种服装每天销售利润 y y(元)与每件的销售价(元)与每件的销售价x x(元)间的函(元)间的函 数关系式;数关系式;(2 2). .通过对所得函数关系式进行配方,指出通过对所得函数关系式进行配方,指出 商商场要想每天获得最大的销售利润,每件的销售价场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?定为多少最为合适?最大利润为多少?(三)(三)销售问题销售问题 某个商店的老
17、板,他最近进了价格为某个商店的老板,他最近进了价格为3030元的书包。起初元的书包。起初以以4040元每个售出,平均每个月能售出元每个售出,平均每个月能售出200200个。后来,根据市场调个。后来,根据市场调查发现:这种书包的售价每上涨查发现:这种书包的售价每上涨1 1元,每个月就少卖出元,每个月就少卖出1010个。现个。现在请你帮帮他,在请你帮帮他,如何定价才使他的利润最大如何定价才使他的利润最大? 某个商店的老板,他最近进了价格为某个商店的老板,他最近进了价格为3030元的元的书包。起初以书包。起初以4040元每个售出,平均每个月能售出元每个售出,平均每个月能售出200200个。后来,根据
18、市场调查发现:这种书包的个。后来,根据市场调查发现:这种书包的售价每上涨售价每上涨1 1元,每个月就少卖出元,每个月就少卖出1010个。现在请个。现在请你帮帮他,你帮帮他,如何定价才使他的利润达到如何定价才使他的利润达到21602160元元?每件涨价)元(x月利润)元(y225020005200y0 x51015202530123457891o-16 (1) 请用长请用长20米的篱笆设计一个矩形的菜园。米的篱笆设计一个矩形的菜园。(2)怎样设计才能使矩形菜园的面积最大?怎样设计才能使矩形菜园的面积最大?ABCDxy2xy最大值(0 x10)(1)求求y与与x的函数关系式及的函数关系式及自变量的
19、取值范围;自变量的取值范围; (2)怎样围才能使菜园的面积最大?怎样围才能使菜园的面积最大?最大面积是多少?最大面积是多少? 如图,用长如图,用长20米的篱笆围成一个一面靠米的篱笆围成一个一面靠 墙的长方形的菜园,设菜园的宽为墙的长方形的菜园,设菜园的宽为x米,面米,面 积为积为y平方米。平方米。ABCD如图,在一面靠墙的空地上用长为如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽篱笆的长方形花圃,设花圃的宽AB为为x米,面积为米,面积为S平方米。平方米。(1)求求S与与x的函数关系式及自变量的取值范围;的函数关系式及自变量的取
20、值范围;(2)当当x取何值时所围成的花圃面积最大,最大值是多少?取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为若墙的最大可用长度为8米,则求围成花圃的最大面积。米,则求围成花圃的最大面积。 ABCD解: (1) AB为x米、篱笆长为24米 花圃宽为(244x)米 (3) 墙的可用长度为8米 (2)当当x 时,S最大值 36(平方米)32ababac442 Sx(244x) 4x224 x (0 x6) 0244x 6 4x6当x4cm时,S最大值32 平方米w(1).设矩形的一边设矩形的一边AB=xm,那么那么AD边的长度如何表示?边的长度如何表示?w(2).设矩形的面
21、积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大何时面积最大 w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作一个矩形ABCD,其中其中ABAB和和ADAD分别在两直角边上分别在两直角边上. .想一想想一想P62MN40m30mABCDw(1).设矩形的一边设矩形的一边BC=xm,那么那么AB边的长度如何表示?边的长度如何表示?w(2).设矩形的面积为设矩形的面积为ym2,当当x取何取何值时值时,y的最大值是多少的最大值是多少?何时面积最大何时面积最大 w如图如图, ,在一个直角三角形的内部作一个矩形在一个直角三角形的内部作
22、一个矩形ABCDABCD,其顶点其顶点A A和点和点D D分别在两直角边上分别在两直角边上, ,BCBC在斜边上在斜边上. .想一想想一想P63ABCDMNP40m30mxmbm : 1 .50 ,24 .MNm PHm解由勾股定理得 xxxxxby242512242512.22.3002525122x.30044,252:2abacyabx最大值时当或用公式12,24.25ABbmbx 设易得HG何时窗户通过的光线最何时窗户通过的光线最多多w某建筑物的窗户如图所示某建筑物的窗户如图所示, ,它的上半部是半圆它的上半部是半圆, ,下下半部是矩形半部是矩形, ,制造窗框的材料总长制造窗框的材料总
23、长( (图中所有的黑线图中所有的黑线的长度和的长度和) )为为15m.15m.当当x等于多少时等于多少时, ,窗户通过的光线窗户通过的光线最多最多( (结果精确到结果精确到0.01m)?0.01m)?此时此时, ,窗户的面积是多少窗户的面积是多少? ?做一做做一做P62xxy .1574.1:xxy由解.4715,xxy得xx215272 24715222.222xxxxxxyS窗户面积.02. 45622544,07. 114152:2abacyabx最大值时当或用公式.562251415272x例:有一根直尺的短边长例:有一根直尺的短边长2cm,长边长,长边长10cm,还有一块锐角,还有一
24、块锐角为为45的直角三角形纸板,其中直角三角形纸板的斜边长为的直角三角形纸板,其中直角三角形纸板的斜边长为12cm按图按图141的方式将直尺的短边的方式将直尺的短边DE放置在与直角三角形放置在与直角三角形纸板的斜边纸板的斜边AB上,且点上,且点D与点与点A重合若直尺沿射线重合若直尺沿射线AB方向平方向平行移动,如图行移动,如图142,设平移的长度为,设平移的长度为x(cm),直尺和三角形),直尺和三角形纸板的重叠部分纸板的重叠部分(图中阴影部分图中阴影部分)的面积为的面积为S cm 2)(1)当)当x=0时,时,S=_;当当x = 10时,时,S =_;(2)当)当0 x4时,如图时,如图14
25、2,求,求S与与x的函数关系式;的函数关系式;(3)当)当6x10时,求时,求S与与x的函数关系式;的函数关系式;(4)请你作出推测:当)请你作出推测:当x为何值时,阴影部分的面积最大?并写为何值时,阴影部分的面积最大?并写出最大值出最大值图141(D)EFCBAxFEGABCD图142ABC备选图一ABC备选图二1.1.某工厂为了存放材料,需要围一个周长某工厂为了存放材料,需要围一个周长160160米的矩形场地,问矩米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大。形的长和宽各取多少米,才能使存放场地的面积最大。2.2.窗的形状是矩形上面加一个半圆。窗的周长等于窗的形状是矩形
展开阅读全文