大数据技术原理与应用课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大数据技术原理与应用课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 技术 原理 应用 课件
- 资源描述:
-
1、大数据技术原理与应用提纲9.1 Spark概述概述9.2 Spark生态系统生态系统9.3 Spark运行架构运行架构9.4 Spark SQL9.5 Spark的部署和应用方式的部署和应用方式9.6 Spark编程实践编程实践大数据技术原理与应用9.1 Spark概述9.1.1 Spark简介9.1.2 Scala简介9.1.3 Spark与Hadoop的比较大数据技术原理与应用9.1.1 Spark简介Spark最初由美国加州伯克利大学(UCBerkeley)的AMP实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序2013年Spark加
2、入Apache孵化器项目后发展迅猛,如今已成为Apache软件基金会最重要的三大分布式计算系统开源项目之一(Hadoop、Spark、Storm)Spark在2014年打破了Hadoop保持的基准排序纪录Spark/206个节点/23分钟/100TB数据Hadoop/2000个节点/72分钟/100TB数据Spark用十分之一的计算资源,获得了比Hadoop快3倍的速度大数据技术原理与应用9.1.1 Spark简介Spark具有如下几个主要特点:运行速度快:使用DAG执行引擎以支持循环数据流与内存计算容易使用:支持使用Scala、Java、Python和R语言进行编程,可以通过Spark Sh
3、ell进行交互式编程 通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源 大数据技术原理与应用9.1.1 Spark简介图16-1 谷歌趋势:Spark与Hadoop对比Spark如今已吸引了国内外各大公司的注意,如腾讯、淘宝、百度、亚马逊等公司均不同程度地使用了Spark来构建大数据分析应用,并应用到实际的生产环境中大数据技术原理与应用9.1.2 Scala简介Scala是一
4、门现代的多范式编程语言,运行于Java平台(JVM,Java 虚拟机),并兼容现有的Java程序Scala的特性:Scala具备强大的并发性,支持函数式编程,可以更好地支持分布式系统Scala语法简洁,能提供优雅的APIScala兼容Java,运行速度快,且能融合到Hadoop生态圈中 Scala是Spark的主要编程语言,但Spark还支持Java、Python、R作为编程语言Scala的优势是提供了REPL(Read-Eval-Print Loop,交互式解释器),提高程序开发效率大数据技术原理与应用9.1.3 Spark与Hadoop的对比Hadoop存在如下一些缺点:表达能力有限磁盘I
5、O开销大延迟高任务之间的衔接涉及IO开销在前一个任务执行完成之前,其他任务就无法开始,难以胜任复杂、多阶段的计算任务 大数据技术原理与应用9.1.3 Spark与Hadoop的对比Spark在借鉴Hadoop MapReduce优点的同时,很好地解决了MapReduce所面临的问题相比于Hadoop MapReduce,Spark主要具有如下优点:Spark的计算模式也属于MapReduce,但不局限于Map和Reduce操作,还提供了多种数据集操作类型,编程模型比Hadoop MapReduce更灵活Spark提供了内存计算,可将中间结果放到内存中,对于迭代运算效率更高Spark基于DAG的
6、任务调度执行机制,要优于Hadoop MapReduce的迭代执行机制 大数据技术原理与应用9.1.3 Spark与Hadoop的对比图16-2 Hadoop与Spark的执行流程对比大数据技术原理与应用9.1.3 Spark与Hadoop的对比1100.9020406080100120HadoopSpark执行时间(s)图16-3 Hadoop与Spark执行逻辑回归的时间对比使用Hadoop进行迭代计算非常耗资源Spark将数据载入内存后,之后的迭代计算都可以直接使用内存中的中间结果作运算,避免了从磁盘中频繁读取数据大数据技术原理与应用9.2 Spark生态系统在实际应用中,大数据处理主要
7、包括以下三个类型:复杂的批量数据处理:通常时间跨度在数十分钟到数小时之间基于历史数据的交互式查询:通常时间跨度在数十秒到数分钟之间基于实时数据流的数据处理:通常时间跨度在数百毫秒到数秒之间当同时存在以上三种场景时,就需要同时部署三种不同的软件比如: MapReduce / Impala / Storm这样做难免会带来一些问题: 不同场景之间输入输出数据无法做到无缝共享,通常需要进行数据格式的转换不同的软件需要不同的开发和维护团队,带来了较高的使用成本比较难以对同一个集群中的各个系统进行统一的资源协调和分配大数据技术原理与应用9.2 Spark生态系统Spark的设计遵循“一个软件栈满足不同应用
8、场景”的理念,逐渐形成了一套完整的生态系统既能够提供内存计算框架,也可以支持SQL即席查询、实时流式计算、机器学习和图计算等Spark可以部署在资源管理器YARN之上,提供一站式的大数据解决方案因此,Spark所提供的生态系统足以应对上述三种场景,即同时支持批处理、交互式查询和流数据处理大数据技术原理与应用9.2 Spark生态系统Spark的生态系统主要包含了Spark Core、Spark SQL、Spark Streaming、MLLib和GraphX 等组件图16-4 BDAS架构Spark生态系统已经成为伯克利数据分析软件栈BDAS(Berkeley Data Analytics S
9、tack)的重要组成部分大数据技术原理与应用9.2 Spark生态系统应用场景应用场景时间跨度时间跨度其他框架其他框架Spark生态系统中的组件生态系统中的组件复杂的批量数据处理小时级MapReduce、HiveSpark基于历史数据的交互式查询分钟级、秒级Impala、Dremel、DrillSpark SQL基于实时数据流的数据处理毫秒、秒级Storm、S4Spark Streaming基于历史数据的数据挖掘-MahoutMLlib图结构数据的处理 -Pregel、HamaGraphX表1 Spark生态系统组件的应用场景大数据技术原理与应用9.3 Spark运行架构9.3.1 基本概念9
10、.3.2 架构设计9.3.3 Spark运行基本流程9.3.4 Spark运行原理大数据技术原理与应用9.3.1 基本概念RDD:是Resillient Distributed Dataset(弹性分布式数据集)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系Executor:是运行在工作节点(WorkerNode)的一个进程,负责运行TaskApplication:用户编写的Spark应用程序Task:运行在Executor上的工作单元 Job:一个Job包含多个RDD及作
11、用于相应RDD上的各种操作Stage:是Job的基本调度单位,一个Job会分为多组Task,每组Task被称为Stage,或者也被称为TaskSet,代表了一组关联的、相互之间没有Shuffle依赖关系的任务组成的任务集大数据技术原理与应用9.3.2 架构设计图16-5 Spark运行架构Spark运行架构包括集群资源管理器(Cluster Manager)、运行作业任务的工作节点(Worker Node)、每个应用的任务控制节点(Driver)和每个工作节点上负责具体任务的执行进程(Executor)资源管理器可以自带或Mesos或YARN与Hadoop MapReduce计算框架相比,Sp
12、ark所采用的Executor有两个优点:一是利用多线程来执行具体的任务,减少任务的启动开销二是Executor中有一个BlockManager存储模块,会将内存和磁盘共同作为存储设备,有效减少IO开销大数据技术原理与应用9.3.2 架构设计图16-6 Spark中各种概念之间的相互关系一个Application由一个Driver和若干个Job构成,一个Job由多个Stage构成,一个Stage由多个没有Shuffle关系的Task组成当执行一个Application时,Driver会向集群管理器申请资源,启动Executor,并向Executor发送应用程序代码和文件,然后在Executor
13、上执行Task,运行结束后,执行结果会返回给Driver,或者写到HDFS或者其他数据库中大数据技术原理与应用9.3.3 Spark运行基本流程图16-7 Spark运行基本流程图(1)首先为应用构建起基本的运行环境,即由Driver创建一个SparkContext,进行资源的申请、任务的分配和监控(2)资源管理器为Executor分配资源,并启动Executor进程(3)SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAGScheduler解析成Stage,然后把一个个TaskSet提交给底层调度器TaskScheduler处理;Executor向SparkCont
14、ext申请Task,Task Scheduler将Task发放给Executor运行,并提供应用程序代码(4)Task在Executor上运行,把执行结果反馈给TaskScheduler,然后反馈给DAGScheduler,运行完毕后写入数据并释放所有资源 大数据技术原理与应用9.3.3 Spark运行基本流程总体而言,Spark运行架构具有以下特点:(1)每个Application都有自己专属的Executor进程,并且该进程在Application运行期间一直驻留。Executor进程以多线程的方式运行Task(2)Spark运行过程与资源管理器无关,只要能够获取Executor进程并保持
15、通信即可(3)Task采用了数据本地性和推测执行等优化机制大数据技术原理与应用9.3.4 RDD运行原理1.设计背景2.RDD概念3.RDD特性4.RDD之间的依赖关系5.Stage的划分6.RDD运行过程大数据技术原理与应用9.3.4 RDD运行原理1.设计背景设计背景许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘工具,共同之处是,不同计算阶段之间会重用中间结果目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达
16、为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,避免中间数据存储大数据技术原理与应用9.3.4 RDD运行原理2.RDD概念概念一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集创建RDD,或者通过在其他RDD上执行确定的转换操作(如map、join和group by)而创建得到新的RDD大
17、数据技术原理与应用9.3.4 RDD运行原理RDD提供了一组丰富的操作以支持常见的数据运算,分为“动作”(Action)和“转换”(Transformation)两种类型RDD提供的转换接口都非常简单,都是类似map、filter、groupBy、join等粗粒度的数据转换操作,而不是针对某个数据项的细粒度修改(不适合网页爬虫)表面上RDD的功能很受限、不够强大,实际上RDD已经被实践证明可以高效地表达许多框架的编程模型(比如MapReduce、SQL、Pregel)Spark用Scala语言实现了RDD的API,程序员可以通过调用API实现对RDD的各种操作大数据技术原理与应用9.3.4 R
18、DD运行原理RDD典型的执行过程如下:RDD读入外部数据源进行创建RDD经过一系列的转换(Transformation)操作,每一次都会产生不同的RDD,供给下一个转换操作使用最后一个RDD经过“动作”操作进行转换,并输出到外部数据源 图16-8 RDD执行过程的一个实例这一系列处理称为一个Lineage(血缘关系),即DAG拓扑排序的结果优点:惰性调用、管道化、避免同步等待、不需要保存中间结果、每次操作变得简单动作转换转换转换转换转换创建创建大数据技术原理与应用9.3.4 RDD运行原理Spark采用RDD以后能够实现高效计算的原因主要在于:(1)高效的容错性现有容错机制:数据复制或者记录日
19、志RDD:血缘关系、重新计算丢失分区、无需回滚系统、重算过程在不同节点之间并行、只记录粗粒度的操作(2)中间结果持久化到内存,数据在内存中的多个RDD操作之间进行传递,避免了不必要的读写磁盘开销(3)存放的数据可以是Java对象,避免了不必要的对象序列化和反序列化3.RDD特性特性大数据技术原理与应用9.3.4 RDD运行原理窄依赖表现为一个父RDD的分区对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区宽依赖则表现为存在一个父RDD的一个分区对应一个子RDD的多个分区图16-9 窄依赖与宽依赖的区别4. RDD之间的依赖关系之间的依赖关系大数据技术原理与应用9.3.4 RD
20、D运行原理Spark通过分析各个RDD的依赖关系生成了DAG,再通过分析各个RDD中的分区之间的依赖关系来决定如何划分Stage,具体划分方法是:在DAG中进行反向解析,遇到宽依赖就断开遇到窄依赖就把当前的RDD加入到Stage中将窄依赖尽量划分在同一个Stage中,可以实现流水线计算5.Stage的划分的划分大数据技术原理与应用9.3.4 RDD运行原理图16-10根据RDD分区的依赖关系划分Stage5.Stage的划分的划分被分成三个Stage,在Stage2中,从map到union都是窄依赖,这两步操作可以形成一个流水线操作流水线操作实例流水线操作实例分区7通过map操作生成的分区9,
21、可以不用等待分区8到分区10这个map操作的计算结束,而是继续进行union操作,得到分区13,这样流水线执行大大提高了计算的效率大数据技术原理与应用9.3.4 RDD运行原理Stage的类型包括两种:ShuffleMapStage和ResultStage,具体如下:(1)ShuffleMapStage:不是最终的Stage,在它之后还有其他Stage,所以,它的输出一定需要经过Shuffle过程,并作为后续Stage的输入;这种Stage是以Shuffle为输出边界,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出,其输出可以是另一个Stage的开始;在一个
22、Job里可能有该类型的Stage,也可能没有该类型Stage;(2)ResultStage:最终的Stage,没有输出,而是直接产生结果或存储。这种Stage是直接输出结果,其输入边界可以是从外部获取数据,也可以是另一个ShuffleMapStage的输出。在一个Job里必定有该类型Stage。因此,一个Job含有一个或多个Stage,其中至少含有一个ResultStage。5.Stage的划分的划分大数据技术原理与应用9.3.4 RDD运行原理通过上述对RDD概念、依赖关系和Stage划分的介绍,结合之前介绍的Spark运行基本流程,再总结一下RDD在Spark架构中的运行过程:(1)创建R
23、DD对象;(2)SparkContext负责计算RDD之间的依赖关系,构建DAG;(3)DAGScheduler负责把DAG图分解成多个Stage,每个Stage中包含了多个Task,每个Task会被TaskScheduler分发给各个WorkerNode上的Executor去执行。图16-11 RDD在Spark中的运行过程6.RDD运行过程运行过程大数据技术原理与应用9.4 Spark SQL9.4.1 从Shark说起9.4.2 Spark SQL设计大数据技术原理与应用9.4.1 从Shark说起Shark即Hive on Spark,为了实现与Hive兼容,Shark在HiveQL方
展开阅读全文