多元函数微分学-习题课课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《多元函数微分学-习题课课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 微分学 习题 课件
- 资源描述:
-
1、一、主要内容一、主要内容平面点集平面点集和区域和区域多元函数概念多元函数概念多元函数多元函数的极限的极限极极 限限 运运 算算多元函数多元函数连续的概念连续的概念多元连续函数多元连续函数的性质的性质全微分全微分概念概念偏导数偏导数概念概念方向导数方向导数全微分全微分的应用的应用复合函数复合函数求导法则求导法则全微分形式全微分形式的不变性的不变性高阶偏导数高阶偏导数隐函数隐函数求导法则求导法则微分法在微分法在几何上的应用几何上的应用多元函数的极值多元函数的极值1 1、多元函数的极限、多元函数的极限说明:说明:(1)定义中)定义中 的方式是任意的;的方式是任意的;0PP (2)二元函数的极限运算法
2、则与一元)二元函数的极限运算法则与一元函数类似函数类似存在性存在性定义,夹逼定理定义,夹逼定理不存在不存在特殊路径、两种方式特殊路径、两种方式求法求法运算法则、定义验证、夹逼定理运算法则、定义验证、夹逼定理 消去致零因子、化成一元极限等消去致零因子、化成一元极限等2 2、多元函数的连续性、多元函数的连续性)()(lim00PfPfPP 3 3、偏导数概念、偏导数概念定义、求法定义、求法偏导数存在与连续的关系偏导数存在与连续的关系高阶偏导数高阶偏导数纯偏导、混合偏导纯偏导、混合偏导4 4、全微分概念、全微分概念定义定义可微的必要条件可微的必要条件可微的充分条件可微的充分条件利用定义验证不可微利用
3、定义验证不可微多元函数连续、可导、可微的关系多元函数连续、可导、可微的关系函数可微函数可微函数连续函数连续偏导数连续偏导数连续函数可导函数可导6 6、全微分形式不变性、全微分形式不变性 无论无论 是自变量是自变量 的函数或中间变量的函数或中间变量 的函数,它的全微分形式是一样的的函数,它的全微分形式是一样的.zvu 、vu 、dvvzduuzdz .7 7、隐函数的求导法则、隐函数的求导法则0),()1( yxF0),()2( zyxF 0),(0),()3(zyxGzyxF 0),(0),()4(vuyxGvuyxFzyzxFFyzFFxz ,5 5、复合函数求导法则、复合函数求导法则),(
4、),(),(yxvvyxuuvufz xvvzxuuzxz yvvzyuuzyz 法则22 “分道相加,连线相乘分道相加,连线相乘”法则的推广法则的推广任意多个中间变量,任意多任意多个中间变量,任意多 个自变量个自变量如何求二阶偏导数如何求二阶偏导数公式法公式法直接法直接法全微分法全微分法8 8、微分法在几何上的应用、微分法在几何上的应用(1)空间曲线的切线与法平面空间曲线的切线与法平面()曲面的切平面与法线曲面的切平面与法线求直线、平面的方程求直线、平面的方程定点(过点)、定向(方向向量、法向量)定点(过点)、定向(方向向量、法向量)曲线:参数式,一般式给出曲线:参数式,一般式给出曲面:隐式
5、、显式给出曲面:隐式、显式给出求隐函数偏导数的方法求隐函数偏导数的方法1010、多元函数的极值、多元函数的极值9 9、方向导数与梯度、方向导数与梯度定义定义计算公式(注意使用公式的条件)计算公式(注意使用公式的条件)梯度的概念梯度的概念向量向量梯度与方向导数的关系梯度与方向导数的关系极值、驻点、必要条件极值、驻点、必要条件充分条件充分条件) 0(2 ACB求函数求函数),(yxfz 极值的一般步骤:极值的一般步骤:最值最值条件极值,目标函数、约束条件条件极值,目标函数、约束条件 构造构造 Lagrange 函数函数),(),(),(zyxzyxfzyxF 二、典型例题二、典型例题例例1 1.)
6、(lim2200yxxxyyx 求极限求极限解解)0(,sin,cos yx令令. 0)0 , 0(),( 等价于等价于则则yx cos)cos(sin)(0222 yxxxy cos)cos(sin ,2 . 0)(lim2200 yxxxyyx故故例例2 已知已知),(ztzyyxfw 求求twzwywxw 解解1fxw 21ffyw 32ffzw 3ftw twzwywxw 0 例例3 已知已知 )sin(cbyaxz 求求nmnmyxz 解解)cos(cbyaxaxz )2sin( cbyaxa)22sin(222 cbyaxaxz)2sin( mcbyaxaxzmmm)22sin(1
7、 mcbyaxbayxzmmm)2)(sin( nmcbyaxbayxznmnmnm 例例4 4.,)(),(2223yxzyzyzfxyxyfxz 求求,具有二阶连续偏导数具有二阶连续偏导数设设解解)1(213xfxfxyz ,2214fxfx )1()1(222121211422xfxfxxfxfxyz ,222123115fxfxfx ,222123115fxfxfx xyzyxz 22)(2214fxfxx )(2)(4222212221211413xyfyfxxfxyfyfxfx .2422114213f yf yxfxfx 例例5 5., 0),(,sin, 0),(),(2dxd
展开阅读全文