人教A版高中数学必修四全套课件全册.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教A版高中数学必修四全套课件全册.ppt》由用户(李小二工作室)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 全套 课件 下载 _人教A版_数学_高中
- 资源描述:
-
1、2022年3月29日人教A版高中数学必修四xAysin知识网络结构1. 1.角的概念的推广角的概念的推广(1)正角,负角和零角正角,负角和零角. .用旋转的观点定义角,并规定了旋转的正方向,就出现了正角,负角和零角,这样角的大小就不再限于00到3600的范围.(3)终边相同的角,具有共同的绐边和终边的角叫终边相同的角,所有与角终边相同的角(包含角在内)的集合为.Zkk,360(4)角在“到”范围内,指.3600(2)象限角和轴线角.象限角的前提是角的顶点与直角坐标系中的坐标原点重合,始边与轴的非负半轴重合,这样当角的终边在第几象限,就说这个角是第几象限的角,若角的终边与坐标轴重合,这个角不属于
2、任一象限,这时也称该角为轴线角.一、任意角的三角函数1、角的概念的推广角的概念的推广正角正角负角负角oxy的终边的终边),(零角零角二、象限角:注注:如果角的终边在坐标轴上,则该角不是象限角。三、所有与角 终边相同的角,连同角 在内,构成集合:|360 ,SkkZ |2,kkZ (角度制)(弧度制)例1、求在 到 ( )范围内,与下列各角终边相同的角036002到1950122()、19( )、34812913原点原点x轴的非负半轴轴的非负半轴一、在直角坐标系内讨论角,角的顶点与 重合,角的始边 与 重合。逆时针旋转为正,顺时针旋转为负。角的终边(除端点外)在第几象限,我们就说这个角是第几象限
3、角。1 1、终边相同的角与相等角的区别、终边相同的角与相等角的区别终边相同的角不一定相等,相等的角终边一定相同。终边相同的角不一定相等,相等的角终边一定相同。2 2、象限角、象间角与区间角的区别、象限角、象间角与区间角的区别Zkkk2 ,2xyOxyOxyOxyO3 3、角的终边落在、角的终边落在“射线上射线上”、“直线上直线上”及及“互相互相垂直的两条直线上垂直的两条直线上”的一般表示式的一般表示式Zkk2ZkkZkk2三、终边相同的角(1)与与 角角终边相同的角的集合终边相同的角的集合:1.几类特殊角的表示方法几类特殊角的表示方法 | =2k + , kZ. (2)象限角、象限界角象限角、
4、象限界角( (轴线角轴线角) )象限角象限角第一象限角第一象限角: (2k 2k + , k Z) 2 第二象限角第二象限角:(2k + 2k + , k Z) 2 第三象限角第三象限角: (2k + 2k + , k Z) 23 第四象限角第四象限角:2 (2k + 2k +2 , k Z 或或 2k - - 2k , k Z ) 23 一、角的基本概念一、角的基本概念轴线角轴线角x 轴的非负半轴轴的非负半轴: =k 360(2k )(k Z); x 轴的非正半轴轴的非正半轴: =k 360+180(2k + )(k Z); y 轴的非负半轴轴的非负半轴: =k 360+90(2k + )(
5、k Z); 2 y 轴的非正半轴轴的非正半轴: =k 360+270(2k + ) 或或 =k 360- -90(2k - - )(k Z); 23 2 x 轴轴: =k 180(k )(k Z); y 轴轴: =k 180+90(k + )(k Z); 2 坐标轴坐标轴: =k 90( )(k Z). 2k 例2、(1)、终边落在x轴上的角度集合:(2)、终边落在y轴上的角度集合:(3)、终边落在象限平分线上的角度集合:|,kkZ |,2kkZ |,42kkZ 例例1. 1.若若是第三象限的角,问是第三象限的角,问/2/2是哪个象限的是哪个象限的角角?2?2是哪个象限的角是哪个象限的角? ?
6、 .D;.C;.B;.A)(22cos2cos)90( 1第四象限第四象限第三象限第三象限第二象限第二象限第象限第象限角属于角属于则则,角是第二象限且满足角是第二象限且满足设设年,上海年,上海例例 C点评点评:本题先由本题先由所在象限确定所在象限确定/2所在象限所在象限,再再/2的的余弦符号确定结论余弦符号确定结论.例例1 求经过1小时20分钟时钟的分针所转过的角度:解:分针所转过的角度48036060201例例2 已知a是第二象限角,判断下列各角是第几象限角 (1) (2)23评析:评析: 在解选择题或填空题时,如求角所在象限,也可以不讨论k的几种情况,如图所示利用图形来判断.四、什么是1弧
7、度的角?长度等于半径长的弧所对的圆心角。OABrr2rOABr(3)角度与弧度的换算.只要记住,就可以方便地进行换算. 应熟记一些特殊角的度数和弧度数. 在书写时注意不要同时混用角度制和弧度制 rad1180180rad180130.571801rad(4)弧长公式和扇形面积公式. rlrnrnl1802360rlrrS212122222360360rnrnS度 弧度 003064543602120321354315065270231803602902、角度与弧度的互化角度与弧度的互化36021801801185730.57)180(1,弧度特殊角的角度数与弧度数的对应表特殊角的角度数与弧度数
8、的对应表 略解:解:例3已知角和满足求角的范围.43,07,44312解:.,.33例例4 4、 已知扇形的周长为定值100,问扇形的半径和圆心角分别为多少时扇形面积最大?最大值是多少?.625)25(50)2100(212122rrrrrlrS)(2,50,25radrllr扇形面积最大值为625. 例例7.7.已知一扇形中心角是已知一扇形中心角是,所在圆的半径是,所在圆的半径是R. R. 若若6060,R R10cm10cm,求扇形的弧长及该弧,求扇形的弧长及该弧所在的弓形面积所在的弓形面积. . 若扇形的周长是一定值若扇形的周长是一定值C C( (C C0)0),当,当为多少为多少弧度时
9、,该扇形的面积有最大值弧度时,该扇形的面积有最大值? ?并求出这一最大并求出这一最大值值? ? 解:(解:(1)设弧长为)设弧长为l,弓形面积为,弓形面积为S弓弓。 1060,10,()33Rlcm 22110131010sin6050)23232SSScm 弓扇()(2)扇形周长扇形周长C=2R+l=2R+Rrrclrs)2(212120cr 注意:(1)圆心在原点,半径为单位长的圆叫单位圆.在平面直角坐标系中引进正弦线、余弦线和正切线 三角函数三角函数三角函数线三角函数线正弦函数正弦函数余弦函数余弦函数正切函数正切函数正弦线正弦线MP 正弦、余弦函数的图象正弦、余弦函数的图象 yx xO-
10、1PMA(1,0)Tsin =MPcos =OMtan =AT注意:注意:三角三角函数线是函数线是有有向线段向线段!余弦线余弦线OM正切线正切线AT 为第二象限角时为第二象限角时 为第一象限角时为第一象限角时 为第三象限角时为第三象限角时 为第四象限角时为第四象限角时 10)函数函数y=lg sinx+ 的定义域是的定义域是(A)(A)x|2kx2k+ (kZ)(B)x|2kx2k+ (kZ)(C)x|2kx2k+ (kZ)(D)x|2kx2k+ (kZ)21cosx3323三角函数线的应用三角函数线的应用一、三角式的证明一、三角式的证明042、已知:角 为锐角, 试证:2sincos21、已
11、知:角 为锐角, 试证:(1)sintan(2)1sincos24、在半径为r的圆中,扇形的周长等于半圆的弧长,那么扇形圆心角是多少?扇形的的面积是多少?答:圆心角为-2,面积是2)2(21r5、用单位圆证明sian tan.(00 0,0) y=Asin(x+)(A0,0) 的图象的对称中心的图象的对称中心和对称轴方程和对称轴方程)sin(xAyxysin00|)sin(xy1101)sin(xy)sin(xAyxysin1011xysin00|)sin(xy)sin(xAy)的简图.)的简图.Asin(xAsin(x1.五点法作函数y1.五点法作函数y的的思思想想. .看看图图说说话话3.
12、3.)的图象.)的图象.Asin(xAsin(x函数y函数y2.通过图象变换得到2.通过图象变换得到时的的思思想想. .代代点看点看趋趋4.4.势势求求解解析析式式注注意意sin()yAxB 函数系列要求:sin()yAxB例例3、不通过求值,比较、不通过求值,比较tan1350与与tan1380的大小。的大小。解:900135013802700又 y=tanx在x(900,2700)上是增函数 tan13500,|0,0)的一个周期内的图象如图,则有( )sin(xAy)32sin(3)62sin(3)3sin(3)6sin(3xyxyxyxy(A)(B)(C)(D)yx03- 312127
13、yx02-2- 4yx0-4234943434如图:根据函数如图:根据函数图象图象求它的解析式求它的解析式yx04432-2如图:根据函数如图:根据函数图象图象求它的解析式求它的解析式yx0112112如图:根据函数如图:根据函数图象图象求它的解析式求它的解析式yx0112112如图:根据函数如图:根据函数图象图象求它的解析式求它的解析式3yx根据正弦函数的图象和性质寻找区间使其满足:根据正弦函数的图象和性质寻找区间使其满足: 使符合条件的使符合条件的 的角的角x有且只有一个,而且有且只有一个,而且包括锐角包括锐角ax sin)11( a4.11 已知三角函数值求角已知三角函数值求角 在闭区间
14、在闭区间 上,符合条件上,符合条件 的角的角x,叫做,叫做实数实数 a 的反正弦,记作的反正弦,记作 ,即,即 ,其中,其中 ,且且 2,2 )11(sin aaxaarcsinaxarcsin 2,2 xxasin aarcsin的意义:的意义:首先首先 表示一个角,角的正弦值为表示一个角,角的正弦值为a ,即,即角的范围是角的范围是aarcsin2,2arcsin a)11( aaa )sin(arcsin4.11 已知三角函数值求角已知三角函数值求角练习:练习:(1) 表示什么意思?表示什么意思?21arcsin表示表示 上正弦值等于上正弦值等于 的那个角,即角的那个角,即角 ,2,2
15、216 21arcsin621arcsin 故故(2)若)若2,2,23sin xx,则,则x= 3)23arcsin( (3)若)若2,2, 7 . 0sin xx,则,则x=7 . 0arcsin4.11 已知三角函数值求角已知三角函数值求角aarccos的意义:的意义:首先首先 表示一个角,角的余弦值为表示一个角,角的余弦值为a ,即,即角的范围是角的范围是 aarccos, 0arccos a)11( aaa )cos(arccos根据余弦函数的图象和性质寻找区间使其满足:根据余弦函数的图象和性质寻找区间使其满足: 使符合条件的使符合条件的 的角的角x有且只有一个,而且有且只有一个,而
16、且包括锐角包括锐角ax cos)11( ayx 在闭区间在闭区间 上,符合条件上,符合条件 的角的角x,叫做,叫做实数实数 a 的反余弦,记作的反余弦,记作 ,即,即 ,其中,其中 ,且且 , 0 )11(cos aaxaarccosaxarccos , 0 xxacos 4、已知三角函数值求角、已知三角函数值求角y=sinx , 的反函数 y=arcsinx , 2,2x 1 , 1xy=cosx, 的反函数y=arccosx, 0 x 1 , 1xy=tanx, 的反函数y=arctanx,)2,2(xRx已知角已知角x ( )的三角函数值求的三角函数值求x的步骤的步骤2 , 0 x先确定
17、x是第几象限角若x 的三角函数值为正的,求出对应的锐角 ;若x的三角函数 值为负的,求出与其绝对值对应的锐角根据x是第几象限角,求出x 若x为第二象限角,即得x= ;若x为第三象限角,即得 x= ;若x为第四象限角,即得x=若 ,则在上面的基础上加上相应函数的周期的整数倍。1x1x1x1x12xRx反三角函数反三角函数已知三角函数值求角已知三角函数值求角x(仅限于0,2 )的解题步骤: 1、如果函数值为正数,则求出对应的锐角x0;如果函数值为负数,则求出与其绝对值相对应的锐角x0 ;2、由函数值的符号决定角x可能的象限角;3、根据角x的可能的象限角得出0,2 内对应的角:如果x是第二象限角,那
18、么可以表示为 x0如果x是第三象限角,那么可以表示为 x0如果x是第四象限角,那么可以表示为2 x0.写出结果写出结果. . (三)已知三角函数值求角(三)已知三角函数值求角”的基本步骤的基本步骤1、基本步骤、基本步骤当当 sinsinx xa a( (1 1a a1)1)且且x x2,2 ,则 ,则x xarcsinarcsina a 这时这时sin(arcsina)=a 当当 coscosx xa a( (1 1a a1)1)且且x x0 0, ,则 ,则x xarcarccoscosa a 这时这时cos(arccosa)=a 当当 tatan nx xa a( (1 1a a1)1)且
19、且x x( (2,2) ),则,则x xarcarctatan na a 这时这时tan(arctana)=a 三、两角和与差的三角函数1 1、预备知识:两点间距离公式、预备知识:两点间距离公式xyo),(111yxp),(222yxp22122121)()(|yyxxpp),(21yxQ2 2、两角和与差的三角函数、两角和与差的三角函数 sinsincoscos)cos( sincoscossin)sin( tantantantan)tan(1 注:公式的逆用注:公式的逆用 及变形的应用及变形的应用)tantan)(tan(tantan 1公式变形公式变形3 3、倍角公式、倍角公式2sins
20、insin2 sincoscos2222sin112coscos2221sincos22tan12tantan222cos21cos22cos21sin2二、知识点二、知识点(一)(一)两角和与两角和与差公式差公式 sincoscossinsinsinsincoscoscostantan1tantantan(二)(二)倍角倍角公式公式 cossin22sin2222sin211cos2sincos2cos2tan1tan22tan公式 =1-cos2 2cos2=1+cos2 1+cos2=2cos2 1-cos2=2sin2tan+tan=tan(+)(1-tantan)tan-tan=ta
21、n(-)(1+tantan)注意1、公式的变形如:注意2、公式成立的条件(使等式两边都有意义).C:S :C2:S 2:T2:T:2sin3、倍角公式、倍角公式cossin22sin22sincos2cos22sin211cos21sincos222tan1tan22tan注:正弦与余弦的倍角公式的逆用实质上就是降幂的过程。特别注:正弦与余弦的倍角公式的逆用实质上就是降幂的过程。特别22cos1cos222cos1sin2返回和角公式的一个重要变形和角公式的一个重要变形cos,sin)sin(cossin222222baababxbaxbxa其中其其 它它 公公 式式(1)cos1cos12t
22、an,2cos12cos,2cos12sin2221、半角公式cos1cos12tan,2cos12cos,2cos12sinsincos1cos1sin2tan2tan12tan2tan,2tan12tan1cos,2tan12tan2sin22222、万能公式十二、两角和与差的正弦、余弦、正切:():S():S():C():C()T():Tsin()sincoscossinsin()sincoscossincos()coscossinsincos()coscossinsintantantan()1tantantantantan()1tantan注意: 、 的以及运用和差公式时要会()T()
23、T如:(),2()()2()(),2()36与互余, + 与互余4422sincossin()abab十三、一个化同角同函数名的常用方法:22cos()ab如:sin3cos2sin()2cos()36sincos2sin()2cos()44例7、求 的值1tan151tan15十四、二倍角公式:2:S2:C2:Tsin22sincos22cos2cossin22cos121 2sin 22tantan21tan21 coscos2221 cossin2221 cos2sin221 cos2cos2降幂(扩角)公式降幂(扩角)公式升幂(缩角)公式升幂(缩角)公式和差化积公式:和差化积公式:积化
24、和差公式:积化和差公式:1sincossin()sin()21cossinsin()sin()21coscoscos()cos()21sinsincos()cos()2 sinsin2sincos22coscos2sinsin22 sinsin2cossin22coscos2coscos22例例4化简:化简:2cos2cos21coscossinsin2222 解法1:从“角”入手,“复角”化为“单角”,利用“升幂公式”。) 1cos2)(1cos2(21coscossinsin222222原式21coscoscoscossinsin22222221cossincossinsin2222221
25、cossin2221例例4化简:化简:2cos2cos21coscossinsin2222 解法2:从“幂”入手,利用“降幂公式”。2cos2cos21)2cos1)(2cos1 (41)2cos1)(2cos1 (41原式2cos2cos21)2cos2cos1 (2121例例4化简:化简:2cos2cos21coscossinsin2222 解法3:从“名”入手,“异名化同名”。2cos2cos21cos)sin1 (sinsin2222原式2cos2cos212cossincos22)2cos21(sin2coscos22)22cos22cos1(2cos)2cos1 (2121例例4化
展开阅读全文