人工智能PPT样板课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人工智能PPT样板课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 PPT 样板 课件
- 资源描述:
-
1、2.1 2.1 引言引言l 贝叶斯决策论是解决模式分类问题的一种基本统计途径。它做了如下假设,即决策问题可以用概率的形式来描述,并且假设所有的概率结构已知。 l 例:鲑鱼和鲈鱼分类l两类鱼自然状态下的先验概率l先验概率是一个随机变量(=1鲈鱼; = 2鲑鱼) l等概率假设下有:P(1) = P(2)P(1) + P( 2) = 1 仅根据先验概率的判决规则if P(1) P(2)则 判为1否则 判为 2连续判决连续判决和误差概率误差概率 使用类条件概率信息( P(x | )类条件概率密度函数 ) P(x | 1) 和 P(x | 2) 描述两类鱼光泽度的不同2.1 2.1 引言引言2.1 2.
2、1 引言引言2.1 2.1 引言引言 处于类别j并具有特征值x的模式的联合概率密度如下: p(j,x) = P(j | x) . p(x)=p(x| j ) .P(j ) 21)()|()(jjjPxpxpp(x)P(|p(x x)|P(jjjevidencepriorlikelihoodposterior l由上可得贝叶斯公式: 两类问题情况下非正式表示: 根据后验概率判决X 是观测属性if P(1 | x) P(2 | x) 判决状态为 1if P(1 | x) P(2 | x) 判为 1 否则判为 2 ; 所以: P(error | x) = min P(1 | x), P(2 | x)
3、 2.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征l 贝叶斯推广l使用多余一个的特征l允许多余两种类别状态的情形l允许有其他行为而不是仅仅是判定类别l通过引入一个更一般的损失函数来替代误差概率2.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征 令1, 2, c 表示有限的c个类别集 1, 2, a 表示有限的a种可能的行为集 (i | j)为类别状态j 时采取行动i的风险。 则有下面的几个等式:cjjjiixPxR1)|()|()|(cjjjjjjPpppPpP1)()|()()()()|()|(xxxxx总风险:xxxxdpRR)()| )( 两类情况下 1 : 判为 1 2
4、: 判为 2 ij = (i | j) :类别为j 时误判为i所引起的损失 条件风险: R(1 | x) = 11P(1 | x) + 12P(2 | x) R(2 | x) = 21P(1 | x) + 22P(2 | x) 2.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征 判决规则如下: 如果 R(1 | x) (12- 22) P(2 |x) 判为 1 否则判为22.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征2.2 2.2 贝叶斯决策论贝叶斯决策论连续特征连续特征 等价判别规则2: 如果: (21- 11) P(x | 1) P(1) (12- 22) P(x | 2)
展开阅读全文