三大检验LMWALDLR课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《三大检验LMWALDLR课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 检验 LMWALDLR 课件
- 资源描述:
-
1、三大检验LM_WALD_LR第第11 11章章 模型的诊断与检验模型的诊断与检验11.1 模型总显著性的模型总显著性的F检验(已讲过)检验(已讲过)11.2 模型单个回归参数显著性的模型单个回归参数显著性的t检验(检验(已讲过已讲过)11.3 检验若干检验若干线性约束条件是否成立的线性约束条件是否成立的F检验检验11.4 似然比(似然比(LR)检验)检验11.5 沃尔德(沃尔德(Wald)检验)检验11.6 拉格朗日乘子(拉格朗日乘子(LM)检验)检验11.7 邹(邹(Chow)突变点检验(不讲)突变点检验(不讲)11.8 JB(Jarque-Bera)正态分布检验(不讲)正态分布检验(不讲)
2、11.9 格兰杰格兰杰(Granger)因果性检验(不讲)因果性检验(不讲)(第(第3版版252页)页)在建立模型过程中,要对模型参数以及模型的各种假定条件在建立模型过程中,要对模型参数以及模型的各种假定条件作检验。这些检验要通过运用统计量来完成。在第作检验。这些检验要通过运用统计量来完成。在第2章和第章和第3章已经介绍过检验单个回归参数显著性的章已经介绍过检验单个回归参数显著性的t统计量和检验模型统计量和检验模型参数总显著性的参数总显著性的F统计量。在第统计量。在第5章介绍了模型误差项是否存章介绍了模型误差项是否存在异方差的在异方差的Durbin-Watson检验、检验、White检验;在第
3、检验;在第6章介绍了章介绍了模型误差项是否存在自相关的模型误差项是否存在自相关的DW检验和检验和BG检验。检验。本章开始先简要总结模型参数总显著性的本章开始先简要总结模型参数总显著性的F检验检验、单个回归参、单个回归参数显著性的数显著性的t检验检验。然后再介绍几个在建模过程中也很常用的。然后再介绍几个在建模过程中也很常用的其他检验方法。他们是检验模型其他检验方法。他们是检验模型若干线性约束条件是否成立若干线性约束条件是否成立的的F检验检验和和似然比(似然比(LR)检验)检验、Wald检验检验、LM检验检验、JB检验检验以及以及Granger非因果性检验非因果性检验。第第11 11章章 模型的诊
4、断与检验模型的诊断与检验 11.1 11.1 模型总显著性的模型总显著性的F 检验检验以多元线性回归模型,以多元线性回归模型,yt = 0 0+ 1xt1+ 2xt2+ k xt k+ ut为例,为例, 原假设与备择假设分别是原假设与备择假设分别是 H0: 1= 2 = = k = 0; H1: j不全为零不全为零在原假设成立条件下,统计量在原假设成立条件下,统计量其中其中SSR指回归平方和;指回归平方和;SSE指残差平方和;指残差平方和;k+1表示模型中表示模型中被估参数个数;被估参数个数;T 表示样本容量。判别规则是,表示样本容量。判别规则是,若若 F F (k,T-k-1),接受,接受H
5、0;若若 F F (k,T-k-1) , 拒绝拒绝H0。 (详见第(详见第3章)章)(第(第3版版252页)页)) 1,() 1/()/(kTkFkTSSEkSSRF 11.2 11.2 模型单个回归参数显著性的模型单个回归参数显著性的t t 检验检验(第(第3版版253页)页) 11.3 11.3 检验若干线性约束条件是否成立的检验若干线性约束条件是否成立的F F 检验检验(第(第3版版254页)页)例例11.1:建立:建立中国国债发行额模型。中国国债发行额模型。首先分析中国国债发行额序列的特征。首先分析中国国债发行额序列的特征。1980年国债发行额是年国债发行额是43.01亿元,占亿元,占
6、GDP当年总量的当年总量的1%,2001年国债发行额是年国债发行额是4604亿元,占亿元,占GDP当年总量的当年总量的4.8%。以当年价格计算,。以当年价格计算,21年间年间(1980-2001)增长了)增长了106倍。平均年增长率是倍。平均年增长率是24.9%。中国当前正处在社会主义市场经济体制逐步完善,宏观经济运中国当前正处在社会主义市场经济体制逐步完善,宏观经济运行平稳阶段。国债发行总量应该与经济总规模,财政赤字的多行平稳阶段。国债发行总量应该与经济总规模,财政赤字的多少,每年的还本付息能力有关系。少,每年的还本付息能力有关系。11.3 11.3 检验若干线性约束条件是否成立的检验若干线
7、性约束条件是否成立的F F 检验检验0100020003000400050008082848688909294969800DEBT(第(第3版版254页)页) 例例11.111.1:建立中国国债发行额模型:建立中国国债发行额模型选择选择3个解释变量,国内生产总值,财政赤字额,年还本付息额,根据散点个解释变量,国内生产总值,财政赤字额,年还本付息额,根据散点图建立中国国债发行额模型如下:图建立中国国债发行额模型如下: DEBTt = 0 + 1 GDPt + 2 DEFt + 3 REPAYt + ut其中其中DEBTt表示国债发行总额(单位:亿元),表示国债发行总额(单位:亿元),GDPt表示
8、年国内生产总值表示年国内生产总值(单位:百亿元),(单位:百亿元),DEFt表示年财政赤字额(单位:亿元),表示年财政赤字额(单位:亿元),REPAYt表示表示年还本付息额(单位:亿元)。年还本付息额(单位:亿元)。01000200030004000500002004006008001000GDPDEBT010002000300040005000-10000100020003000DEFDEBT01000200030004000500005001000150020002500REPAYDEBT (第(第3版版255页)页)用用1980 2001年数据得输出结果如下;年数据得输出结果如下; DE
9、BTt = 4.31 +0.35 GDPt +1.00 DEFt +0.88 REPAYt (0.2) (2.2) (31.5) (17.8) R2 = 0.999, DW=2.12, T =22, SSEu= 48460.78, (1980-2001)是否可以从模型中删掉是否可以从模型中删掉DEFt和和REPAYt呢?可以用呢?可以用F统计量完成上述检验。统计量完成上述检验。原假设原假设H0是是 3 = 4 = 0(约束(约束DEFt和和REPAYt的系数为零)。给出约束模型的系数为零)。给出约束模型估计结果如下,估计结果如下, DEBTt = -388.40 +4.49 GDPt (-3.
10、1) (17.2) R2 = 0.94, DW=0.25, T =22, SSEr= 2942679, (1980-2001)已知约束条件个数已知约束条件个数m = 2,T- k-1 = 18。SSEu= 48460.78,SSEr= 2942679。 因为因为F=537.5 F( 2, 18) =3.55,所以,所以拒绝原假设拒绝原假设。不能从模型中删除解释变。不能从模型中删除解释变量量DEFt和和REPAYt。(第(第3版版256页)页)例例11.111.1:建立中国国债发行额模型:建立中国国债发行额模型EViews可以有三种途径完成上述可以有三种途径完成上述F检验。检验。(1)在输出结果
11、窗口中点击)在输出结果窗口中点击View,选,选Coefficient Tests, Wald Coefficient Restrictions功能(功能(Wald参数约束检验),在随后弹出的对话框中填入参数约束检验),在随后弹出的对话框中填入c(3) = c(4) = 0。可得如下结果。其中。可得如下结果。其中F = 537.5。例例11.111.1:建立中国国债发行额模型:建立中国国债发行额模型(第(第3版版256页)页) (2)在非约束模型输出结果窗口中点击)在非约束模型输出结果窗口中点击View,选,选Coefficient Tests, Redundant Variables -Li
12、kelihood Ratio功能(模型中是否存在多余的不重功能(模型中是否存在多余的不重要解释变量),在随后弹出的对话框中填入要解释变量),在随后弹出的对话框中填入GDP,DEF。可得计算结果。可得计算结果F = 537.5。(3)在约束模型输出结果窗口中点击)在约束模型输出结果窗口中点击View,选,选Coefficient Tests, Omitted Variables -Likelihood Ratio功能(模型中是否丢了重要的解释变量),在功能(模型中是否丢了重要的解释变量),在随后弹出的对话框中填入拟加入的解释变量随后弹出的对话框中填入拟加入的解释变量GDP,DEF。可得结果。可得
13、结果F = 537.5。例例11.111.1:建立中国国债发行额模型:建立中国国债发行额模型(第(第3版版256页)页) 11.4 11.4 似然比(似然比(LRLR)检验)检验(第(第3版版257页)页)11.4 11.4 似然比(似然比(LRLR)检验)检验(第(第3版版258页)页) 似然比(似然比(LR)检验的)检验的EViews操作有两种途径。操作有两种途径。(1)在非约束模型估计结果窗口中点击)在非约束模型估计结果窗口中点击View,选,选Coefficient Tests, Redundant Variables -Likelihood Ratio功能(模型中是否存在多余的不重要
14、解释变量),在随功能(模型中是否存在多余的不重要解释变量),在随后弹出的对话框中填入后弹出的对话框中填入GDP,DEF。可得结果。其中。可得结果。其中LR(Log likelihood ratio)= 90.34,与上面的计算结果相同。,与上面的计算结果相同。(2)在约束模型估计结果窗口中点击)在约束模型估计结果窗口中点击View,选,选Coefficient Tests, Omitted Variables -Likelihood Ratio功能(模型中是否丢了重要的解释变量),在随后弹出的对话框功能(模型中是否丢了重要的解释变量),在随后弹出的对话框中填入拟加入的解释变量中填入拟加入的解释
15、变量GDP,DEF。可得结果。其中。可得结果。其中LR(Log likelihood ratio)= 90.34,与上面的计算结果相同。,与上面的计算结果相同。11.4 11.4 似然比(似然比(LRLR)检验)检验11.511.5沃尔德(沃尔德(WaldWald)检验)检验(第(第3版版259页)页)11.511.5沃尔德(沃尔德(WaldWald)检验)检验(第(第3版版260页)页) 11.511.5沃尔德(沃尔德(WaldWald)检验)检验(第(第3版版260页)页)11.511.5沃尔德(沃尔德(WaldWald)检验)检验(第(第3版版261页)页)在原假设在原假设 1 2 =
16、3 成立条件下,成立条件下,W统计量渐近服从统计量渐近服从 (1) 分布。分布。11.511.5沃尔德(沃尔德(WaldWald)检验)检验(第(第3版版262页)页)11.511.5沃尔德(沃尔德(WaldWald)检验)检验(第(第3版版263页)页)11.511.5沃尔德(沃尔德(WaldWald)检验)检验(第(第3版版263页)页)在在(11.20)式窗口中点击式窗口中点击View,选,选Coefficient Tests, Wald-Coefficient Restrictions功能,并在随后弹出的对话框中填入功能,并在随后弹出的对话框中填入C(2)/C(3)=0.5,得输出结,
17、得输出结果如图果如图11.7。其中。其中 2 = 0.065即是即是Wald统计量的值。上式统计量的值。上式W= 0.075与此略有与此略有出入。出入。因为因为W= 0.065对应的概率大于对应的概率大于0.05,说明统计量落在原假设的接收域。结,说明统计量落在原假设的接收域。结论是接受原假设(约束条件成立)。论是接受原假设(约束条件成立)。11.511.5沃尔德(沃尔德(WaldWald)检验)检验(第(第3版版263页)页)11.6 11.6 拉格朗日乘子(拉格朗日乘子(LMLM)检验)检验拉格朗日(拉格朗日(Lagrange)乘子()乘子(LM)检验只需估计约束模型。所)检验只需估计约束
18、模型。所以当施加约束条件后模型形式变得简单时,更适用于这种检验。以当施加约束条件后模型形式变得简单时,更适用于这种检验。LM乘子检验可以检验线性约束也可以检验非线性约束条件的原乘子检验可以检验线性约束也可以检验非线性约束条件的原假设。假设。对于线性回归模型,通常并不是拉格朗日乘子统计量(对于线性回归模型,通常并不是拉格朗日乘子统计量(LM)原)原理计算统计量的值,而是通过一个辅助回归式计算理计算统计量的值,而是通过一个辅助回归式计算LM统计量的统计量的值。值。(第(第3版版264页)页)(第(第3版第版第265页)页)11.6 11.6 拉格朗日乘子(拉格朗日乘子(LMLM)检验)检验LM检验
19、的辅助回归式计算步骤如下:检验的辅助回归式计算步骤如下: (1) 确定确定LM辅助回归式的因变量。辅助回归式的因变量。用用OLS法估计约束模型,计法估计约束模型,计算残差序列,并把作为算残差序列,并把作为LM辅助回归式的因变量。辅助回归式的因变量。 (2) 确定确定LM辅助回归式的解释变量。辅助回归式的解释变量。例如非约束模型如下式例如非约束模型如下式,yt = 0 + 1 x1t + 2 x2 t + + k xk t + ut 把上式改写成如下形式把上式改写成如下形式 ut = yt - 0 - 1 x1t - 2 x2 t - - k xk t 则则LM辅助回归式中的解释变量按如下形式确
20、定。辅助回归式中的解释变量按如下形式确定。 - , j = 0, 1, , k.对于非约束模型(对于非约束模型(11.26),),LM辅助回归式中的解释变量是辅助回归式中的解释变量是1, x1t , x2t , , xk t 。第一个解释变量。第一个解释变量1表明常数项应包括在表明常数项应包括在LM辅助辅助回归式中。回归式中。jtu11.6 11.6 拉格朗日乘子(拉格朗日乘子(LMLM)检验)检验 (3) 建立建立LM辅助回归式,辅助回归式, = + 1 x1t + 2 x2 t + + k xk t + vt , 其中由第一步得到。其中由第一步得到。(4) 用用OLS法估计上式并计算可决系
21、数法估计上式并计算可决系数R 2。(5) 用第四步得到的用第四步得到的R2计算计算LM统计量的值。统计量的值。 LM = T R 2其中其中T表示样本容量。在零假设成立前提下,表示样本容量。在零假设成立前提下,TR 2 渐近服从渐近服从m个自由度的个自由度的 2(m) 分布,分布,(m) LM = T R 2 2 (m)其中其中m表示约束条件个数。表示约束条件个数。tu (第(第3版版265页)页)11.6 11.6 拉格朗日乘子(拉格朗日乘子(LMLM)检验)检验(第(第3版版266页)页)11.6 11.6 拉格朗日乘子(拉格朗日乘子(LMLM)检验)检验11.7 邹邹(Chow)突变点检
22、验(不讲)突变点检验(不讲)11.8 JB(Jarque-Bera)正态分布检验(不讲)正态分布检验(不讲)(第(第3版版267页)页)11.9 格兰杰格兰杰(Granger)因果性检验(不讲)因果性检验(不讲)(第(第3版版277页)页)(第(第3版版278页)页)11.9 格兰杰格兰杰(Granger)因果性检验(不讲)因果性检验(不讲)注意:注意:(1)“格兰杰因果性格兰杰因果性”的正式名称应该是的正式名称应该是“格兰杰非因果格兰杰非因果性性”。只因口语都希望简单,所以称作。只因口语都希望简单,所以称作“格兰杰因果性格兰杰因果性”。(2)为简便,通常总是把)为简便,通常总是把xt-1 对
23、对yt存在(或不存在)存在(或不存在)格兰杰格兰杰因果关系表述为因果关系表述为xt(去掉下标(去掉下标 -1)对)对yt存在(或不存在)存在(或不存在)格兰格兰杰杰因果关系(严格讲,这种表述是不正确的)。因果关系(严格讲,这种表述是不正确的)。(3)格兰杰因果关系与哲学意义的因果关系还是有区别的格兰杰因果关系与哲学意义的因果关系还是有区别的。如果说如果说“xt 是是yt的的格兰杰原格兰杰原因因”只是表明只是表明“xt中包括了预测中包括了预测yt的有效信息的有效信息”。(4)这个概念首先由格兰杰()这个概念首先由格兰杰(Granger)在)在1969年提出。年提出。(第(第3版版278页)页)1
24、1.9 格兰杰格兰杰(Granger)因果性检验(不讲)因果性检验(不讲)例例11.8: 以以661天(天(1999年年1月月4日至日至2001年年10月月5日)的上证日)的上证综指(综指(SHt)和深证成指()和深证成指(SZt)数据为例,进行双向的)数据为例,进行双向的Granger非因果性分析。两个序列存在高度的相关关系,那非因果性分析。两个序列存在高度的相关关系,那么两个序列间可能存在双向因果关系,也有可能存在单向因么两个序列间可能存在双向因果关系,也有可能存在单向因果关系。果关系。3004005006007001000150020002500100200300400500600SZS
展开阅读全文