空间直线与平面之间的位置关系平面与平面之间的关系课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间直线与平面之间的位置关系平面与平面之间的关系课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 直线 平面 之间 位置 关系 课件
- 资源描述:
-
1、LOGO复习引入:复习引入:1 1、空间两直线的位置关系、空间两直线的位置关系(1 1)相交;()相交;(2 2)平行;()平行;(3 3)异面)异面2.2.公理公理4 4的内容是什么的内容是什么? ?平行于同一条直线的两条直线互相平行平行于同一条直线的两条直线互相平行. .3.3.等角定理等角定理的内容是什么的内容是什么?空间中如果两个角的两边分别对应平行,那么空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。这两个角相等或互补。4.4.等角定理的推论等角定理的推论是什么是什么?如果两条相交直线和另两条相交直线分别平行如果两条相交直线和另两条相交直线分别平行, ,那么这两条直线所成
2、的锐角那么这两条直线所成的锐角( (或直角或直角) )相等相等. .5.5.什么是异面直线什么是异面直线? ?什么是异面直线什么是异面直线所成的角所成的角? ?什么是异面直线垂直什么是异面直线垂直? ?异面直线定理的内容是什异面直线定理的内容是什么么? ?如图所示,如图所示,a,b是两条是两条异面直线,异面直线,在空间中任选一点在空间中任选一点O,过过O点分别作点分别作 a,b的平行线的平行线 a和和 b,abPabO 则这两条线所成则这两条线所成的锐角的锐角(或直角),(或直角), 称为称为异面直线异面直线a,b所成的角所成的角。?任选任选Oa若两条异面直线所成角为若两条异面直线所成角为90
3、,则称它们互相垂直。,则称它们互相垂直。异面直线异面直线a与与b垂直也记作垂直也记作ab异面直线所成角异面直线所成角的取值范围:的取值范围: 0 90 ( ,平平移移复习引入:复习引入:异面直线定理:异面直线定理:连结平面内一连结平面内一点与平面外一点的直线,和这点与平面外一点的直线,和这个平面内不经过此点的直线是个平面内不经过此点的直线是异面直线异面直线?B?A,ABlBl ABl与与 是异面直线是异面直线复习引入:复习引入:两直线的夹角:两直线的夹角:90两直线相交所成的两直线相交所成的4个角中个角中,其中其中不大于不大于 的角叫做两直线的夹角的角叫做两直线的夹角研探新知研探新知(1 1)
4、一支笔所在直线与一个作业本所在)一支笔所在直线与一个作业本所在的平面,可能有几种位置关系?的平面,可能有几种位置关系?A1B1C1D1ABCD(2)如图,线段)如图,线段A1B所在直线与长方体所在直线与长方体ABCD-A1B1C1D1的六个面所在平面有几的六个面所在平面有几种位置关系?种位置关系? a直线与平面直线与平面相交相交 Aaa直线与平面直线与平面平行平行a a 无交点无交点直线在平面直线在平面内内有无数个交点有无数个交点a a a = A a = A有且只有一个交点有且只有一个交点 直线与平面的位置关系有且只有三种:直线与平面的位置关系有且只有三种:(1)直线在平面内直线在平面内-有
5、无数个公共点有无数个公共点a如图:如图:(2)直线在平面外:直线在平面外:a直线直线a和面和面相交相交 :aA如图:如图: 直线直线a和面和面平行平行 :如图:如图:.Aaaa直线与平面的位置关系有且只有三种直线与平面的位置关系有且只有三种:/a (1)直线在平面内)直线在平面内 有无数个公共点有无数个公共点 (2)直线和平面相交)直线和平面相交 有且只有一个公共点有且只有一个公共点 (3)直线和平面平行)直线和平面平行 没有公共点没有公共点 直线在平面外直线在平面外a Aaaa=Aa 例例1 1、下列命题中正确的个数是(、下列命题中正确的个数是( )若直线若直线 上有无数个点不在平面上有无数
6、个点不在平面内,则内,则若直线与平面若直线与平面平行,则与平面平行,则与平面内内的任意一条直线平行的任意一条直线平行如果两条平行直线中的一条与一个平面平如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行行,那么另一条也与这个平面平行若直线与平面若直线与平面平行,则与平面平行,则与平面内内的任意一条直线都没有公共点的任意一条直线都没有公共点. .lll /lll(A A)0 0 (B B) 1 1 (C C)2 2 (D D) 3 3例题示范例题示范: :分析:可以借助长方体模型来看上述问题是否正分析:可以借助长方体模型来看上述问题是否正确。确。问题(问题(1 1)不正确,相交时
7、也符合。)不正确,相交时也符合。问题(问题(2 2)不正确,)不正确,如右图中,如右图中,ABAB与与平面平面DCCDDCCD平行,平行,但它与但它与CDCD不平行。不平行。问题(问题(3 3)不正确。)不正确。另一条直线有可能在平面内,如另一条直线有可能在平面内,如ABCDABCD,ABAB与平与平面面DCCDDCCD平行,但直线平行,但直线CDCD 平面平面DCCDDCCD问题(问题(4 4)正确,所以选()正确,所以选(B B)。)。例题示范例题示范: :例例22 已知直线已知直线a a在平面在平面外,则外,则 ( )(A A)aa (B B)直线)直线a a与平面与平面至少有至少有一个
8、公共点一个公共点?(C)a =A(D)直线)直线a与平面与平面至多有一个公共点。至多有一个公共点。例题示范例题示范: :D巩固练习巩固练习:1 1选择题选择题(1 1)以下命题(其中)以下命题(其中a,ba,b表示直线,表示直线, 表示平面)表示平面)若若a ab b,b b,则,则a a 若若a a ,b b ,则,则a ab?b?若若a ab b,b b ,则,则a a 若若a a ,b b,则则a ab?b?其中正确命题的个数是(其中正确命题的个数是(?)(A A)0 0个个 (B B)1 1个个 (C C)2 2个个 (D D)3 3个个A2.2.已知已知a a ,b b ,则直线,则
展开阅读全文