书签 分享 收藏 举报 版权申诉 / 29
上传文档赚钱

类型移动机器人路径规划概述与人工势场法课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2272795
  • 上传时间:2022-03-28
  • 格式:PPT
  • 页数:29
  • 大小:454.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《移动机器人路径规划概述与人工势场法课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    移动 机器人 路径 规划 概述 人工 势场法 课件
    资源描述:

    1、 整理人:李帅 中国科学院合肥智能机械研究所 仿生感知实验室1. 1.什么是路径规划什么是路径规划2. 2.路径规划的常用方法路径规划的常用方法 3.3.人工势场法人工势场法 依据某种最优准则,在工作空间中寻找一条从起始状依据某种最优准则,在工作空间中寻找一条从起始状态到目标状态的避开障碍物的最优路径。态到目标状态的避开障碍物的最优路径。 1. 始于初始点止于目标点。始于初始点止于目标点。2. 避障。避障。3. 尽可能优化的路径。尽可能优化的路径。2.1基于几何构造的方法(自由空间法) 基本步骤:1.将机器人抽象为点,适当扩大障碍物的大小。2.构造自由空间。 3.采用图搜索算法如Dijkstr

    2、a算法寻找最优路径。2.11基于几何构造的常用算法可视图法 Voronoi法 2.2栅格法(1)图中灰色区域为障碍物2.2栅格法(2)图中黄色的路线表示该算法得到的最优路径2.2D*(dynamic A*)算法(3)美国火星探测器核心的寻路算法就是采用的D*算法 适合于动态路径规划 D*算法的思路可以推广到改造自由空间法使其具有动态规划功能2.3智能化路径规划方法 基于逻辑推理的路径规划方法 基于模糊逻辑的路径规划方法 基于强化学习的路径规划方法 基于遗传算法的路径规划方法 基于神经网络的路径规划方法2.31基于逻辑推理的路径规划方法1.定义一个状态(state)集,该集合反映机器人通过传感器

    3、测得的当前状态。2.定义一个行为(action)集,该集合反映了机器人当前可以采取的动作。3.确定从状态到行为的映射关系。2.32基于模糊逻辑的路径规划方法 在基于逻辑推理的路径规划方法基础进行改进: 传感器的一次测量值与多个状态对应,每个状态有一个隶属度对应。 根据模糊推理结果确定行为。2.33基于强化学习的路径规划 在基于逻辑推理的路径规划方法基础进行改进: 具有在线学习功能(通过Q学习算法实现)2.34基于遗传算法的路径规划(1)建模: 对2维路径规划问题,将待规划的路径看成是n个点组成的点集,除初始点和目标点外其余n-2个点(xi, yi ) i=2,3,4n-1都未知,共有2(n-2

    4、)个未知参数。2.34基于遗传算法的路径规划(2)112222,2,3,3,1,11122min(.)()() nnlnniiiiiiiEf x y x yxyLxxyy优化目标:约束:(xi, yi )必须在障碍物外部。采用惩罚函数法转化为无约束优化问题进行处理:minlcEEwE(EC为惩罚项)2.34基于遗传算法的路径规划(3) 遗传算法具有全局寻优性能,对上述无约束优化问题可以得到全局最优解。 当然,其他的优化算法同样可以用于路径规划。2.35基于神经网络的路径规划1.按照2.34的方法,转化为优化问题。2.用神经网络表示惩罚函数。3根据E递减推导出相应的反向传播算法用于神经网络的训练

    5、.优势:神经元可以并行计算2.4人工势场法基本原理障碍物对机器人施加排斥力,目标点对机器人施加吸引力合力形成势场,机器人移动就像球从山上滚下来一样机器人在合力作用下向目标点移动3.人工势场法人工势场法 3.1人工势场法的基本原理(2.4) 3.2人工势场法的实用算法 3.3人工势场法的改进算法3.2人工势场法的实用算法3.21非点形障碍物问题 普通的障碍物的形状不是一个点,如何确定一个障碍物对机器人的排斥力呢? 方案1:计算障碍物内所有点斥力的合力。 方案2:用离障碍物最近的点进行计算。 方案3:3.22死锁(dead lock)现象(1)如何克服死锁现象: 死锁现象的实质是落入局部极值,全局

    6、优化算法可以避免落入局部极值。3.22死锁(dead lock)现象(2) 避免死锁的改进算法: APF与随机采样相结合如RPP算法 APF与遗传算法(GA)相结合 APF与其他全局优化算法相结合:如:粒群算法,蚁群算法,模拟退火法,附加动量法等。3.23GNRON问题: 障碍物与目标点过于接近引起斥力场和引力场同时存在而阻碍到达目标点的现象。解决方案:3.24移动机器人为多面体的情况 方案1:一般情况下,可以将机器人作为点,适当扩大障碍物来进行研究。 方案2:对多面体每个顶点计算排斥力和吸引力,障碍物对机器人的排斥力是对所有顶点排斥力的合力。3.3人工势场法的改进算法(1) 主要是针对死锁问

    7、题进行改进RPP算法(APF与随机采样相结合)的原理: 1.开始时执行Descend模式 2.如果没有出现死锁则成功,否则执行Escape模式 3.如果Escape模式失败,执行Backtrack模式3.3人工势场法的改进算法(2)一种APF与GA相结合的算法: 在基于GA的路径规划算法(2.34)中介绍了GA如何用于路径规划,但是这种算法存在着计算量(n) 与路径规划的质量之间的矛盾。采用APF与GA结合的算法可以取较小的n获得满意的效果并且避免死锁。 3.3人工势场法的改进算法(2) APF与GA相结合的算法原理:1.选取初始可行种群,每个种群中具有n-2个参数(xi, yi ) (2.34)。2. 每一个种群中,在相邻两个点(xi, yi )和(xi+1, yi+1 )之间利用APF得到一条连接这两个点的无碰撞路径。对于一个种群来说,就可以得到从起始点到目标点的无碰撞路径。3.计算每个种群对应的路径的长度作为适配度,对(xi, yi )进行交叉、变异、选择运算得到新的n-2个参数。4.重复上述步骤直至结束。3.3人工势场法的改进算法(2)交叉前:交叉后:

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:移动机器人路径规划概述与人工势场法课件.ppt
    链接地址:https://www.163wenku.com/p-2272795.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库